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Abstract Change in land use and land cover
(LULC) contributes in worsening ecological issues.
Studying the trends of change in land use is highly
significant to deal with global climate change and
sustainable development. The aim of this paper is
to evaluate the spatial-temporal dynamics of LULC
of the Bamenda Mountains (BM) in the North
West region of Cameroon, over a period of 34 years
(1988-2022) and predict 34 years (2022-2056) future
land use scenario of this site using time series satel-
lite imagery (MSS, TM, ETM+, and OLI-TIRS) and
ancillary data and to comprehend the driving forces
of land use/land cover change (LULCC). The trends
of LULCC were quantified; LULC maps were derived
by classifying time series satellite images. Six LULC
categories were identified during the study period
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(1988-2022). The research revealed a significant
LULCC of the BM which can be justified by increase
in the human population observed in the study area
and the desire to extend agricultural lands to sus-
tain the growing population. Overall, cultivated area
5684 ha (10.47%), 10680 ha (19.57 %), and 15163
ha (27.78%) and built-up area 449 ha (0.83%), 996
ha (1.83%), and 3242 ha (5.94%) for the study years
1988, 2003, and 2022, respectively, were all on the
increase throughout the study period at the expense
of other land cover types. The predicted figures of
2056 showed a continuous reduction of montane for-
est and savanna: 2401.92 ha (4.40%) and 25,862.67
ha (47.39%), respectively. Bare area is expected
to drop in 2056 (2905.92 ha (5.32%)). The above
decrease, when compared to 2022 figures, represents
a loss of 3.97%, 4.53%, and 0.57%, respectively. The
losses observed are gained by built-up and cultivated
land (5.72% and 3.39%, respectively), covering sur-
faces areas of 6364.89 ha (11.66%) and 17,008.56
ha (31.17%), respectively. The above findings sug-
gest that population growth is likely the major men-
ace to the natural environment. It is thus safe to say
that substantial LULCC was observed throughout the
study period and will undoubtedly continue if noth-
ing is done. This necessitates urgent measures such as
reforestation and afforestation, encouraging off-farm
activities and even improving technologies to combat
the rate of forest degradation of the BM. Addition-
ally, rebuilding trust between the French and English
Cameroons through dialogue is premodial, to end the
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curent conflictual civil war and lessen the landscape
configuration in Bamenda.

Keywords LULC change - Change prediction -
GIS - Remote sensing - Mount Bamenda(BM)

Introduction

Land use and land cover change (LULCC) has been
an alarming situation in both developed and less
developed countries of the world, due to their reper-
cussions on sustainable development and far reach-
ing effects on other segments of the economy. For
the past years, land resource has always been closely
associated with economic, social, and other anthro-
pogenic activities (Alemayehu et al., 2019). The pat-
terns of land use and land cover (LULC) of a place
is thus the result of the socio-economic, natural fac-
tors, and their spatiotemporal utilization by humans.
LULC dynamics are extended and accelerated with
the main driving force being population growth.
These landscape alterations play a significant role in
natural resource deterioration and have repercussions
on man (Leh et al., 2013; Alemayehu et al., 2019;
Chen et al., 2022).

The world population is growing at a speedy rate,
and recent forecasts suggest that the planet may con-
tain 9.8 billion people by 2050 or 11. 2 billion peo-
ple by 2100 (DESA, 2017). This implies that urban
growth will have broad effects on environmental,
social, and economic services that mankind heav-
ily relies on (Mattsson et al., 2022). Continuous
encroachment on the land use and land cover has an
important impact on ecosystems with a great influ-
ence on the diversity of the biotic and abiotic com-
ponents of the ecosystem as well as the ability of the
landscapes and humans to cope with climatic, socio-
economic, and political disturbances. It is therefore
necessary to be knowledgeable about these superfi-
cial processes to forecast future scenarios to ensure
sustainable development (Kibreab, 1996; Ahlcrona,
1989; Olagunju, 2008).

LULCC can affect the energy balance, soil fertility,
and the biogeochemical cycles. A constant watch and
prediction of the changes are therefore necessary to
ensure the environment is managed sustainably (Lupo
et al,, 2001; Kindu et al., 2013). Population pres-
sure and other significant drivers such as government
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policies and poverty have accelerated the LULC
dynamics of tropical mountains and have paved a way
to tropical ecosystems losses (Kidane et al., 2012;
Said et al., 2021). This goes against the 2030 Agenda,
where the UN (United Nations) established its Sus-
tainable Development Goal 15 aimed to “Protect,
restore and promote sustainable use of terrestrial eco-
systems, sustainably manage forests, combat deser-
tification, and halt and reverse land degradation and
halt biodiversity loss.” Sustainable Mountain Devel-
opment is also a major object of interest of Chap-
ter 13 of Agenda 21, which stipulates that mountains
are great sources of water, energy, biodiversity, agri-
cultural products, and minerals (Maghah et al., 2021;
Sachs et al., 2022; Jan et al., 2023).

Mountain ecosystems are rapidly degraded
although they are sources of many water bodies,
energy, biodiversity hotspots, and food reservoirs
for humankind (FAO, 2017). These unique milieus
sustain the population around and even beyond the
mountains by regulating the quality and quantity of
water originating therein. Mountain ecosystems are
global assets but constantly threatened by anthro-
pogenic activities and to an extent by natural dis-
turbances (Gratzer & Keeton, 2017; Maghah et al.,
2021).

The Bamenda Mountains (BM) in the North West
region of Cameroon is a unique ecosystem and home
to diverse flora and fauna of promising potentials.
Animal rearing and agriculture are the principal
activities influencing the livelihood and the economic
well-being of the local population of the Mezam divi-
sion in the North West region of Cameroon (Awazi,
2022). Mountainous forests being vulnerable are con-
stantly degraded due to pressure from anthropogenic
activities and natural disturbances. Forest degrada-
tion is generally a gradual process within the forest
that adversely alters its characteristics, which affects
the forest quality, there by compromising its ability
to generate goods and services for mankind and the
ecosystem. Forest lands can be altered both directly
through overexploitation, overgrazing, and crude
agricultural systems and indirectly through climate
variability, epidemic, and landslide (Simula, 2009).

Few studies have analyzed land use/land cover
change and their drivers (meanly anthropogenic
activities) in Cameroon and in the north west region
(Mofor et al., 2022; Maghah et al., 2021; Ntangti
et al.,, 2019; Asaha et al., 2016; Ewane, 2021;
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Asong et al., 2019; Temgoua et al., 2018). Mean-
while, a study by Forboseh et al. (2003) monitored
bird species at Kilum Ijim Mountain Forest reserve
to uncover the status of the forest and the individ-
ual species, thus considering suites of bird species
as indicators of vegetation changes. However, no
studies considered analyzing both the driving forces
of LULCC and forecasting the future land use sce-
nario of the Bamenda Mountains. The conversion of
the initial land cover (vegetation) of the Bamenda
Mountains to other land cover types notably built-
up and agricultural land is mainly to sustain the
growing population.

This study utilized remote sensing and GIS tech-
nology, based on time series satellite images to ana-
lyze the LULCC of the Bamenda Mountains and
change prediction of this site using Markov chain
model. This was initiated to inform policymakers and
ensure the sustainable management of this site. The
Markov chain model (MCM) for time series analy-
sis and prediction used in this study is a stochastic
model, modeling temporal or sequential data. This
model predicts the future state of a system basing on
the immediately preceding state and has been exten-
sively used to model areas of land use changes at
great spatial scales (Huang et al., 2008; Tadese et al.,
2021).

Remote sensing is a competitive and cost-effective
technology used to map out and obtain information
from large portions of the earth. GIS and the remote
sensing technology are efficient in mapping and ana-
lyzing land use changes and the mineral resources
distribution, (Ahlcrona, 1989; Tematio, 2016) using
multi-spectral scanner (MSS), thematic mapper
(TM), and enhanced thematic mapper (ETM) data
from Landsat satellite images. This technology has
been used in many studies to identify features of land
use and land cover changes and detect soil degrada-
tion activities (Mainguet, 2012; Leumbe et al., 2012).
Quality image resolution makes it possible to moni-
tor, analyze, and interpret land use changes for differ-
ent periods of time to know the trends, the reasons,
and the manner in which the changes occur (Rindfuss
et al., 2004; Shiferaw & Singh, 2011).

As a prelude to the Bamenda Mountains forest
resource conservation, vis-a-vis its indiscriminate
exploitation, it is worth taking actions for the sustain-
able management of this site for the next generations
to enjoy similar good and services offered.

The aim of this paper is to evaluate the spatial and
temporal dynamics of LULC of the Bamenda Moun-
tains (BM) in the North West region of Cameroon,
over a period of 34 years (1988-2022) and predict 34
years (2022-2056) future land use scenario of this site
using time series satellite imagery (TM, ETM+, and
OLI-TIRS) and ancillary data and to understand the
driving forces of the LULCC. The present research
paper provides the entire Mezam division (North
West region of Cameroon) and policymakers with the
present and the future views of the Bamenda Moun-
tains (BM), so progress can be accelerated towards
achieving Sustainable Development Goals (SDGs)
and eventually Sustainable Development (SD).

Materials and methods
Description of the study area

The present study was carried out in the Mezam divi-
sion (Fig. 1) with Bamenda as the head quarter, the
city capital of the North West region of Cameroon.

But the study area considered in this research work
is the Bamenda Mountains chain forest (BMCF) or
the Bamenda Mountains (BM). This area is between
latitude 5°46'00"N to 5°56’30"N of the equa-
tor and longitude 10°10°00”E to 10°16'30"E of the
Greenwich meridian, with an altitude of 2621 m.
The Bamenda Mountains (BM) is situated exactly
between Mount Bamboutos in the SW and Mount
Oku in the NW with altitudes of 2740 m and 3011 m,
respectively, all constituting the Western Highlands
of Cameroon (WHC), along the Cameroon Volcanic
Line (CVL) or Cameroon Line (CL) (Fig. 2). The
BM is at the central part of the WHC, which is practi-
cally a continual volcanic structure with no clear cut
demarcation between the mountains. This site (BM)
has many geomorphological structures such as cal-
deras, escarpments, volcanic dykes, steep slopes,
domes, plateau, plains, and even valleys (Guedjeo
et al., 2017; Zangmo et al., 2017; Chenyi et al., 2017,
Dedzo et al., 2013) with two main calderas: Santa-
Mbu and Lefo.

The topography of this site is accidental, originat-
ing from the variety of volcanic activities that have
occurred. It also has a conducive tropical climate
of two seasons: a long rainy season from March to
October with a short dry season from November to
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«Fig. 1 Location map of the study area

February. Mean temperature is between 21 and 25
°C with annual rainfall between 1800 and 2500 mm
(Guedjeo et al., 2017; Yufenyuy & Nguetsop 2020).
Soils here are mostly lateralitic characterized with
red color, also suitable for agricultural practices espe-
cially when properly irrigated and fertilized. The veg-
etation cover of the BM is mainly of savannah and
forest types.

The Bamenda Mountains chain forest harbors
many species of plants and animals. The plants pre-
sent here are of great therapeutic values. The location
of the Bamenda Mountains chain gives it a special
importance. Like any other mountainous forest, this
site is rich with abundant flora and fauna, goods and
services to mankind. It is as well the source of many
water bodies.

The CVL is the principal multifaceted plutono-vol-
canic passing through Cameroon. This volcanic line
is 1600-km long and 100-km wide (Zangmo et al.,
2017), extending from the Gulf of Guinea in the
Atlantic ocean up to Lake Chad in the African con-
tinent (Fig. 3). Essential studies have highlighted that
the CL is subjected to threats of diverse origins, and
these milieus have pulled and encouraged an active
population of diverse origins and nurtured their set-
tlement during the past years (Dedzo et al., 2013;
Wantim et al., 2013; Guedjeo et al., 2013; Zangmo
etal., 2017).

Data acquisition and analysis

The data used in this research work were mainly
imagery from remote sensing, topographic maps,
and field observations. Data from GPS records (train-
ing sites and ground control points (150)) assisted in
the process (Fig. 5). Related literatures as well and
reconnaissance information assembled from the field
of study (key informant interview and focus groups
discussions) were also used. Several aerial images
from Google Earth application were used as well to
assist in the classification process. All relevant infor-
mation was collected and analyzed in support of the
issue being investigated. These data helped to com-
pliment the methods used in the study. The satellite
images used were downloaded from the United States

Geological Survey (USGS) website (http:/glovis.
usgs.gov/).

The landscape dynamics was investigated using
Landsat TM (thematic mapper), ETM+ (enhanced
thematic mapper), and OLI-TIRS (operational land
imager and thematic infrared sensor) singly captured
in 1988, 2003, and 2022 (Table 1). The above remote
sensing dataset used for the research work was cloud-
free and of the dry season to ensure the land cover
and mostly the vegetative cover which is the topic of
the study could be perceived.

Image preprocessing and classification methods

ERDAS IMAGINE 11, ArcGIS 10, and IDRISI
SELVA 17.0 software were used for this study to per-
form the image processing functions required to com-
plete the land cover classification. Using this method,
the area of interest (AOI) from all the land cover
types in the image was extracted. The images of the
study area were taken through three stages to generate
land cover classes of the study area. These included:

Feature identification using a spectral profile
— Choice of training data (signatures)
Choice of appropriate classification methods

All images were atmospherically and geometri-
cally corrected using ERDAS IMAGINE 11 to avoid
haze, sensor noise, and to adjust loss or missing data
due to the position of the sun and satellite calibra-
tion (Feranec et al., 2007; Tadese et al., 2021). The
images were projected to UTM (Universal Transverse
Mercator) zone 32 by the World Geodetic System 84
(WGS84) datum. Layer stacking, image subsetting,
image enhancement, NDVI, BI, and color composite
were performed on all the images of the study dates
to make objects more visible to lessen omission and
confusion errors and ensure more accuracy during the
classification process (Wubie et al., 2016; WoldeYo-
hannes et al., 2018; Temgoua et al., 2018).

The present study made use of a hybrid method of
image classification (both unsupervised and super-
vised) using IDRISI SELVA 17.0, as summarized in
Fig. 6. An unsupervised classification was to obtain
main training parcels for field verification followed
by a supervised classification through maximum
likelihood algorithm for the classification (Temgou
et al., 2018; Bufebo & Flias, 2021; Wang et al., 2021)

@ Springer
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Fig. 2 The 3D map of Bamenda Mountains (MB), within the Western Highlands of Cameroon (WHC), adapted from Guedjeo et al.

(2017)

of Landsat TM, ETM+, and OLI-TIRS images of
the study dates. The above was followed by a time
series analysis and prediction using IDRISI SELVA
modeling.

After the classification of each image, they were
imported into the ArcMap Catalogue package to gen-
erate maps used to compare each image date for bet-
ter understanding the changes on the Bamenda Moun-
tains chain over time. The classification technique
adopted in this study was to make sure it suits the
goal of the study. At the end, the LULC maps were
derived with 6 classes.

Normalized Difference Vegetation Index (NDVT)

The NDVI which is the index of plant greenness was
calculated for all the images of the study. The main
reason for calculating this index was to support the
image classification process. This index shows pho-
tosynthetically active vegetation, the amount of chlo-
rophyll present in plant leaves, and thus an indica-
tion of vegetation quantity (Asong et al., 2019). The
NDVI was gotten from the near-infrared (NIR) and
the visible red light bands of the TM, ETM+, and
OLI-TIRS satellite imageries of the study. Generally,

@ Springer

photosynthetically active or abundant vegetation
absorbs more incoming red light and reflects close
to 25% of NIR, whereas scanty or unhealthy veg-
etation reflects most of the visible red light and less
NIR light. The NDVI is calculated using the formula
below (Asong et al., 2019):

(NIR — RED)

NDVI= — (1)
(NIR + RED)

where NIR = near-infrared band value for a cell

RED = red band value for a cell

NDVI values range from —1 to +1 where values
greater and positive indicate highly photosyntheti-
cally active vegetation or dense vegetation recorded
by the sensor and negative or values less than zero
have no ecological meaning they actually indicate
non-vegetative classes (Weier & Herring, 2000).

Brightness Index (BI)

The Brightness Index (BI) characterizes the aver-
age of the brightness of a satellite image (Ouerche-
fani et al., 2009). It was computed using the formula
below (Samiee et al., 2018).
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BI = VR? + NIR? )

R = red band value for a cell

NIR = near infrared band value for a cell

The reason for the choice of the Normalized Dif-
ference Vegetation Index (NDVI) and Brightness
Index (BI) was due to both indices having proven to
be more reliable to effectively identify separate LULC
categories of a study area (kolios and stylios, 2013).

Classification accuracy assessment

Assessing the classification accuracy is essential for
the classified data to obviously detect changes (Wang
et al., 2020, 2021). The accuracy assessment of the
classified images was achieved using 150 Ground
Control Points (GCP) (Fig. 5) recorded with the
help of a hand held Garmin GPS, relevant informa-
tion gathered via key informant interview, and focus
group discussions. High-resolution Google Earth
images (Fig. 4) and topographic maps were used as
reference data to support the classification accuracy
process (Fig. 6). Besides, field observations and per-
sonal knowledge about the study area also assisted.
The classified images were compared to the reference
data to understand the level of similarities and differ-
ences, helping to create an error matrix (Ariti et al.,
2015; Bufebo & Elias, 2021).

The classification results of the data were cross-
tabulated against the reference data to form the error
matrices that helped to examine the classification
accuracy. The producer’s accuracy (omission error),
user’s accuracies (commission error), the overall
accuracy, and kappa coefficient were calculated from
the error matrices. Producer’s accuracy was obtained
by dividing the samples’ number correctly identified
by the totals of the reference data; meanwhile, the
user’s accuracy was gotten by dividing the samples’
number correctly identified in each class by the clas-
sified totals (Ukrainshi, 2016; Said et al., 2021). The
overall classification accuracy of each image of the
study was calculated by dividing the pixels’ number
correctly classified by the total of the sample points
(Ukrainshi, 2016; Said et al., 2021). The formula
below (Bufebo & Elias, 2021) was used to calculate
the overall accuracy.

X
A== %100
S 3)

@ Springer

where A = overall accuracy

X = total of correct values in the diagonals of the
matrix

Y = total of values of a reference point

The kappa coefficient is a measure of the total
accuracy statistic of the error matrix between the
classified map and the reference data. The said coef-
ficient considers nondiagonal elements (Ukrainshi,
2016; Bufebo & Elias, 2021; Said et al., 2021). A
value above 0.80 signifies a good classification; a
value ranging from 0.40 to 0.80 signifies a moderate
classification; and a value below 0.40 implies a poor
classification (Firdaus, 2014) and thus implying the
greater the kappa value, the authentic the classifica-
tion (Ukrainshi, 2016). The formula below (Wang
et al., 2021; Firdaus, 2014; Bufebo & Elias, 2021;
Said et al., 2021) was used to calculate the kappa
coefficient:

NY_xii — X (xi+ % x+10)

K 2 r . .
N2 = (it % x +10)

“

where K = kappa coefficient
R = number of rows in matrix
Xii = number of observations in row i and column

Xi+ = marginal totals of row i
X+i = marginal total of column i
N = total of observations in the whole error matrix

Detection of land use and land cover change
(LULCC)

The LULC changes in terms of hectares and per-
centages were calculated for all the study dates to
understand the trends of change between land cover
categories of the different study periods. The change
detection was obtained from the formulas below
(Hassen & Assen, 2018; Bufebo & Elias, 2021; Ale-
mayehu, 2019):

X, — X
Ae(%) = <—( 2X ‘)> % 100 (5)

1

_f ha \ _ (Xz - Xl)
Ae rate = <year> = < 7 ) (6)
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Fig. 4 Google image of the Bamenda Mountains, January 2021

where Ae(%) = percentage of change in LU area and
LC type between initial time X; and final time X,.

X; = LULC type at the initial year

X, = LULC type at the final year

Y = time interval between the final and initial
years

Prediction of LULCC

Markov chain model which is a stochastic model,
modeling temporal or sequential data, has been exten-
sively used to model areas of land use changes at great
spatial scales (Huang et al., 2008). The present study

@ Springer
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Tabl(? 1 . Details of Landsat Satellite image  Sensor Acquisition date ~ Path/row  Resolution =~ Band  Source
satellite images
Landsat 5 ™ 1988/01/22 187/056 30%30m 6 USGS
Landsat 7 ETM+ 2003/01/10 186/056 30*30m 8 USGS
Landsat 8 OLI-TIRS  2022/01/22 186/056 30%30m 11 USGS
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made use of the Markov chain model (MCM) for time
series analysis and prediction using IDRISI SELVA
modeling where the land use change for the year 2056
was predicted. To achieve this objective, the 1988,
2003, and 2022, land cover maps were made using a
maximum likelihood classification technique. From
here, the land cover image (t-1) of 1988 and the land
cover image (t = 1) of 2022 were considered to run a
Markov model. This model generated both the transi-
tion probability file and the transition area file. The
transition probability shows how a pixel is likely to
change to a different LU and LC or remain the same
in the subsequent time. But, a transition area matrix
indicates a total area likely to change the subsequent
time (Said et al., 2021). The results obtained from the
Markov model joined with the suitability maps were
used to run the CA-Markov model employing a 5 X 5
contiguity filter. From here, the simulated 2056 map
was produced.

Transition suitability maps

The transitional suitability maps which show the
probability of a pixel to change to another class or
remain the same (Wang et al., 2021) were obtained
using the multi-criteria evaluation (MCE). The MCE

integration of various driving forces helps to develop
the single index of evaluation (Wang et al., 2021, El-
Hallaq & Habboub, 2014). The driving forces are dif-
ferent depending on the study area. The authors’ good
knowledge of the study area and the difficult nature
of the terrain coupled with factors such as socio-eco-
nomic, political, and physical closeness to existing
LULC helped to determine the transition rules. The
transition suitability maps were calculated using the
distance to settlement areas, main road, cultivated
areas, water bodies, and slopes. The digital elevation
model (DEM) with road maps and other infrastruc-
tures was obtained from the Bamenda City Council.
The standardized factor maps (0—1) were made using
the fuzzy membership functions, with O represent-
ing unsuitable locations and 1 representing perfect
locations. The weights of the driving forces were
therefore derived from the analytic hierarchy process
(AHP).

Prediction validation of LULCC

Model validation is primordial in the process of
modeling (Said et al., 2021; Memarian et al., 2012).
Studies (Baysal, 2013; Brown et al., 2013; Katana
et al., 2013) have highlighted varieties of methods for

Table 2 Statistics of projection validation for 2022 reference and simulated LULC

Information of quantity

Information of allocation No [n] Medium [m] Perfect [p]

Perfect[P(x)] P(n) = 0.5783 P(m) = 0.9801 P(p) = 1.0000
PerfectStratum[K(x)] K(n) = 0.5783 K(m) = 0.9801 K(p) = 1.0000
MediumGrid[M(x)] M(n) = 0.5380 M(m) = 0.9523 M(p) = 0.9606
MediumStratum[H(x)] H(n) = 0.1711 H(m) = 0.3192 H(p) = 0.3103
No[N(x)] N(@) = 0.1711 N(m) = 0.3192 N(p) = 0.3103

AgreementChance = 0.1711
AgreementQuantity = 0.1600
AgreementStrata = 0.0000
AgreementGridcell = 0.6732
DisagreeGridcell = 0.0378
DisagreeStrata = 0.0000
DisagreeQuantity = 0.0399

K index Kno =0.9714

K index Klocation = 0.9506

K index KlocationStrata = 0.9506
K index Kstandard = 0.9247
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«Fig. 6 Flow chart of remote sensing methodology framework
for the study

model validation such as chi-square and F-test of the
observed and simulated images, the kappa coefficient
and Cramer’s V, as well as the quantity and alloca-
tion disagreements. To achieve the prediction valida-
tion results the present study made use of kappa index
of agreement (KIA) technique using the VALIDATE
module in IDRISI SELVA to examine the level of
resemblance between the actual and simulated 2022
LULC. The above technique provided the validation
statistics for the reference 2022 LULC and the com-
parison 2022 LULC (Table 2). The validation module
observes the agreement between the LULC maps of
the same classes (Gupta et al., 2020). The cross-tab-
ulation approach was used to ascertain the magnitude
of transformations of each LULC, for model valida-
tion after which the 2056 future LULC map was
projected.

Results

Assessment of the classification accuracy of the
classified 1988, 2003, and 2022

The kappa statistic is one of the effective and widely
used methods of measuring the model capacity to
predict (Hua, 2017; Wang et al., 2021). Studies (Viera
& Garrett, 2005; Manonmani & Suganya, 2010) have
also highlighted that a kappa value < O signifies no
agreement; 0.01-0.20 implies slight; 0.21-0.40 as
fair; 0.41-0.60 as moderate; 0.61-0.80 as significant;

and 0.81-0.99 as nearly perfect agreement. For the
present study to be reliable and accurate, the overall
accuracy was computed for all the classified images
of the study periods (1988, 2003, 2022) with values
95.83%, 94.25%, and 94.48%, kappa statistics values
of 0.94, 0.91, and 0.92, respectively (Table 3). The
above statistics thus show a reliable level of agree-
ment for the study.

Analysis of LULC change of the Bamenda Mountain

By analyzing land use and land cover, we can com-
prehend important changes that have occurred on
land like loss of biodiversity, degradation of the natu-
ral environment, and landscape configuration (Wang
et al., 2021).

The classification techniques used in this study
yielded 6 LULC classes: montane forest, savan-
nah, cultivated area, bare area, built-up, and lake
(Table 4). Accordingly, the landscape configuration
of the study area can be easily perceived from 1988 to
2022 (Fig. 7, Table 5).

The present study demonstrated the effectiveness
of remote sensing and GIS techniques in mapping,
classifying, and finalizing the different land use and
land cover categories of the Bamenda Mountains
chain forest from 1988 to 2022. Looking at the analy-
sis (Fig. 7, Table 5), it is readily perceived that the
land cover types vary, followed by substantial altera-
tion throughout the study period. The characteris-
tics of these land cover classes are well explained at
the research methodology section above (Table 4).
The Bamenda Mountains occupy the northeastern
and south western part of the map, presenting the

Table 3 Accuracy

LUC classes L5 TM 1988 L7 ETM+ 2003 L8 OLI 2022
assessment and kappa
coefficient of agreement of Producer’s  User’s Producer’s  User’s Producer’s  User’s
the classified images accuracy accuracy — accuracy accuracy  accuracy accuracy
(%) (%) (%) (%) (%) (%)
Lake 100.00 90.00 90.00 90.00 81.82 90.00
Savannah 98.80 97.59 98.02 96.12 98.67 94.87
Built-up 90.00 90.00 75.00 90.00 100.00 90.00
Forest 91.40 96.97 84.62 91.67 85.71 92.31
Cultivated A. 100.00 93.75 96.43 93.10 95.35 97.62
Bare A. 93.80 93.75 90.00 90.00 81.82 90.00
Overall accuracy  95.83% 94.25% 94.48%
Kappa coefficient 0.94 0.91 0.92

Bold simply signifies emphasis
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Table 4 LULC classes for the study dates (1988-2022) and their descriptions

LULC classes Descriptions

Montane forest ~ Area of dense vegetation, made up of both natural and planted forests, forming almost closed canopies, on the

mountains
Built-up area Areas occupied by commercial and residential buildings and transportation facilities
Savanna Grassland areas with herbaceous plants, short and stunted trees, grazing fields
Cultivated area  Areas used for the growing of different types of crops
Bare area Open landscape mainly rocky with little or no vegetative cover
Lake Areas occupied by extensive standing or slowly moving water bodies

vegetation which is the main focus of interest in the
study and other LULC categories. The montane for-
est (dense vegetation on mountain top) is gradually
degraded followed by the savannah mainly on steep
slopes. We also have both clustered and linear settle-
ment patterns around towns (Bamenda and Bambili)
confirming the saying that goes: “where the road
passes, development follows” (Lim, 1999). Built-ups
are as well scattered throughout the study area, with
cultivated areas and bare areas at their proximities
(Fig. 7). A small proportion of the surface area of the
study site is covered by water notably lakes.

Overall, built-up and cultivated areas are all on the
increase throughout the study period at the expense
of other land cover types. These built-up areas (449

ha (0.83%); 996 ha (1.83%); 3242 (5.94%)) and cul-
tivated areas (5684 ha (10.47%); 10680 ha (19.57%);
15163 (27.78%)) for the years 1988, 2003, and 2022,
respectively (Table 5), can be justified by the popu-
lation growth of the Mezam division. Population
growth and its repercussions on the natural environ-
ment are common worldwide and severe in devel-
oping countries (Alemu et al., 2012). Likewise, the
Mezam population is estimated at 5234.127 inhab-
itants, with around 86 persons per km?, and when
compared to the past, the population trend is on
the increase. The rural population of this division
depends mainly on agriculture and livestock rearing.
With the increased human and livestock population,
agricultural lands are on the increase at the detriment
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Table 5 Areas of LULC change of the Bamenda Mountains from 1988-2022

2022

2003

1988

LULC classes

Area (%) Area (ha) Area (%) Area (ha) Area (%)

Area (ha)

5.89
5.94

3215

1.73
1.83

943
996

5684 10.47
0.83

449

Bare area

3242

Built up area

27.78

15163
4588

19.57
8.26

10680
4509
37416

28

10.47
22.37

55.81

5684

Cultivated area

8.41

12138
30288

28

Montane forest

51.92
0.05
100

28337
28

68.56

Savannah
Lake

0.05
100

0.05

54271

54271

100

54271

Total

Bold simply signifies emphasis

of the natural environment. Looking at the forest veg-
etation, it can be seen that the montane forest dropped
from 1988 to 2003 (12,138 ha (22.37%); 4509 ha
(8.26%), respectively) with a slight increase in 2022
(4588 ha (8.41%)) as seen in (Table 5, Fig. 7). The
sudden increase in montane forest from 2003 to 2022
could be attributed to the plantation of new trees
under agroforestry projects and practices (Awazi
et al.,, 2022). The savannah that occupied the high-
est surface area in 1988 (30288 ha (55.81%)) (Fig. 7,
Table 5) dropped throughout the study period. Water
body that occupied the smallest proportion of the
study area remained unchanged throughout the study
period. It is vital to underscore that the montane for-
est and the savannah vegetation somewhat dropped
significantly during the study period at the expense
of cultivated lands and built-up. Contrarily, bare soil
dropped from 1988 to 2022 (5684 ha (10.47); 943 ha
(1.73%), respectively) and considerably increased in
2022 (3215(ha) 5.89%). The sudden increase of bare
area in the year 2022 could be attributed to cattle rear-
ers’ activities through grazing especially in Lefo, in
the southern part of the study area and Neshele in the
northern part of the study area. Both grazers and the
farmers’ activities through bush fires and expansion
of agricultural lands play a vital role in the bare areas
observed (Temgoua et al., 2018). The ongoing civil
unrest in Cameroon otherwise known as the Anglo-
phone crisis has played a significant role in the bare
areas observed. The current conflictual civil war has
led to massive destruction of properties and villages
in the North West region of Cameroon (Amnesty
International, 2021). As of 2018, reports on human
right abuses indicates that around 87 villages have
been burnt down in the North West region of Came-
roon (Lee et al., 2021; U.S. House of Representatives,
2018). Current findings reveal that properties includ-
ing houses are continually being ruined in over 170
villages (Agwanda et al., 2020; Bang et al., 2022).

Patterns of change of LULC of the Bamenda
mountains for the past 34 years (1988-2022)

Overall, the LULCC results (Table 6, Fig. 8) indicate
that built-up and cultivated lands increased throughout
the study period (1988-2022). This implies that 5.11%
and 17.31% of the total study area were occupied by
built-up and cultivated land, respectively. The above
patterns of LULC changes are attributed to the increase
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Table 6 Percentage of change of LULC of the Bamenda Mountains

LULC classes 1988 2003 2022 Overall change
(1988-2022)
Bare area 10.47% 1.73% 5.89% 4.58%
Built-up area 0.83% 1.83% 5.94% 5.11%
Cultivated area 10.47% 19.57% 27.78% 17.31%
Montane forest 22.37% 8.26% 8.41% —13.96%
Savannah 55.81% 68.56% 51.92% -3.89%
Lake 0.05% 0.05% 0.05% 0%

in the population trend of the Mezam division that
necessitates the desire to expand agricultural lands and
thus the occupation of marginal lands, at the detriment
of the natural environment. Although bare area dropped
in 2003 and significantly increased in 2022, the reasons
for the sudden increase are livestock rearers’ and farm-
ers’ activities. However, the civil unrest going on in
Cameroon and particularly in the North West and South
West regions as discussed in the analysis of LULC
change of the Bamenda Mountains section above con-
tributes in a greater extend to the bare areas observed.

The areas occupied by other land cover categories
showed losses differently (Table 6, Fig. 8) throughout
the study period, with the greatest losses experienced
by the montane forest, followed by the savannah veg-
etation (—13.96%, —3.89%, respectively).

LULC transition between 1988 and 2022

To better understand the evolution of LULC cat-
egories of the Bamenda Mountain, six classes were

Fig. 8 Patterns of change
of LULC of the Bamenda Lake
Mountains with gains and
losses form 1988 to 2022

Built up area ||

Bare area -I

-50.00% 0.00%

W 1988 m2003 2022
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mapped (Fig. 7), following the LULC transition
between the study years (Fig. 9). The transition map
was generated by the LCM and showed areas of
changes of the classes from 1988 to 2022. It is obvi-
ous that the selected classes showed transitions differ-
ently from 1988 to 2022. The transition from savanna
to cultivated area (9546.93 ha) is higher throughout
the study period due to the population growth of the
Mezam division. This was followed by the transition
from forest to savannah (6550.65 ha). The most sta-
ble LULC category during the study period is culti-
vated area to bare area (302.31 ha), implying there is
a low probability of cultivated area transitioning to
bare area. The next stable category is cultivated area
to built-up (489.06 ha), showing that the probability
of cultivated area transitioning to built-up is also low.
The transition from forest to bare area and from forest
to cultivated land showed significant changes (513.36
ha, 1500.3 ha, respectively) and anthropogenic activi-
ties through deforestation, agricultural expansion,
built-up, and cattle grazing are some of the main

Montane forest -.
Cultivated area --

50.00% 100.00% 150.00% 200.00%

Overall change (1988-2022)
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Table 7 The transition probability matrix of 2056 LULC change

Given : Probability to change to :

L SV BItA MF CA BA
L 0.9243 0.0032 0.0032 0.0000 0.0000 0.0694
SV 0.0000 0.5470 0.0665 0.0371 0.3152 0.0341
BItA 0.0000 0.3019 0.5188 0.0032 0.1502 0.0258
MF 0.0000 0.5397 0.0231 0.2713 0.1236 0.0423
CA 0.0000 0.4253 0.0817 0.0023 0.4402 0.0505
BA 0.0002 0.4463 0.0394 0.0274 0.2489 0.2378

L =lake, SV = savanna, BltA = built-up area, MF = montane forest, CA = cultivated area, BA = bare area

factors responsible for the forest vegetation loss of the
study area (Alemu et al., 2012; Temgoua et al., 2018).
All the remaining LULC categories show great transi-
tions differently (Fig. 10).

The transition probability matrix of 2056 LULC change

The probability of LULC of 2056 showed the dyna-
mism of LULC classes (Table 7). Nevertheless, the
likelihood of most classes remaining the same was
high for lake (0.9243), savanna (0.5470), and built-
up area (0.5188); cultivated area showed moderate
likelihood of remaining the same (0.4402). However,
the probability of other LULC categories to remain
unstable was low. It is obvious from Table 7 that no
LULC categories will change to lake.

Results revealed a higher probability of montane
forest changing to savanna (0.5397), with moderate

Fig. 9 Transition area in
six LULC classes of the
Bamenda Mountains from
1988 to 2022

probability of cultivated area to savanna (0.4253)
than savanna to cultivated area (0.3152). Values also
showed a moderate probability of bare area changing
to savanna (0.4463). The main reason for the conver-
sion of montane forest could be increased population
in the Mezam division, through immigration from
neighboring subdivisions for greener pastures, espe-
cially as Bamenda is the head quarter of the North
West region of Cameroon.

The projection results and validation of LULC of the
Bamenda Mountain

The model accurately simulated the 2056 LULC
(Fig. 11) by making a comparison of both the
observed and simulated 2022 LULC maps. There
was good similarity between their classes and the
spatial distribution of classes (Table 8).

Cultivated AtoBare A Il 302.31
Forestto Bare A HE 513.36

SavannatoBare A M 1034.01

Bare A to Cultivated A I 1414.35

Transition in Classes

Forest to Cultivated A I 1500.3
Savanna to Cultivated A I  9546.93
Savanna to Forest I 1124.19

Cultivated A to Builtup M 489.06
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Bare to Savanna N 2536.74

Cultivated A to Savanna N 2544.84

Forest to Savanna I 6550.65
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Table 8 Predicted LULC for 2056

LULC classes Area (ha) Area (%)
Lake 28 0.05
Savanna 25862.67 47.39
Built-up area 6364.89 11.66
Montane forest 2401.92 4.40
Cultivated area 17008.56 31.17
Bare area 2905.92 5.32

Prediction validation of LULC

The prediction validation results were achieved using
kappa index of agreement (KIA) technique, employ-
ing the VALIDATE module in IDRISI SELVA to
examine the level of resemblance between the actual
and simulated 2022 LULC. The above technique pro-
vided the validation statistics for the reference 2022
LULC and the comparison 2022 LULC (Table 2).
The validation module observes the agreement
between the LULC maps of the same classes (Gupta
et al., 2020). The cross-tabulation approach was used
to ascertain the magnitude of transformations of each
LULC, for model validation after which the 2056
future LULC map was projected.

The model validation statistics (Table 2) show
classification agreement/disagreement according to
ability to specify accurately quantity and allocation.
The statistics clearly pointed out the resemblance
between the actual 2022 LULC and the comparison
2022 LULC. However, the dissimilarity between
the two is due to the changes still to take place. The
accuracy assessment statistics using the kappa coef-
ficient variations confirms the authenticity of the
classified images (Table 3). The overall accuracies
were 95.83%, 94.25%, and 94.48% for 1988, 2003,
and 2022 images, respectively. Likewise, the model
showed the overall accuracy of the simulated map
to be Kno, 97.14 %; Klocation, 95.06%; Klocation-
Strata, 95.06%; and Kstandard, 92.47%.

Expected transition in 2056 by surface area in
hectares and percentage

The predicted LULC of the Bamenda Mountains
using the Markov chain model is presented in Table 8

@ Springer

and Fig. 11. The 2056 LULC categories and surface
areas were compared to those of 2022 to quantify the
changes. The predicted figures of 2056 showed a con-
tinuous reduction of montane forest by 2401.92 ha
(4.40%) and savanna by 25,862.67 ha (47.39%). Bare
area is expected to drop in 2056 by 2905.92 ha (5.32%)
(Table 2). The above decrease, when compared to 2022
figures (Table 6), represents a loss of 3.97%, 4.53%,
and 0.57% for montane forest, savanna, and bare area,
respectively. The losses observed are gained by built-
up and cultivated land (5.72% and 3.39%, respectively),
covering surface areas of 6364.89 ha (11.66%) and
17,008.56 ha (31.17%), respectively.

The 2056 spatial distribution of LULC (Fig. 11)
shows that the montane forest scatters across the study
area with more patches towards the northern part, the
central part, and the western part of the study area. The
patches of forest remaining are observed mostly at the
proximity of cultivated land, built-up, and savanna.
The land cover categories covered by vegetation will
be converted to built-up and cultivated land by 2056.
The above transition is due to population increase and
urbanization in the North West region of Cameroon,
which is similar to that of many less developed coun-
tries of the world (Alemu et al., 2012; Said et al., 2021).

Discussion
Land use/land cover change

Land use/land cover change (LULCC) poses severe
threats to the climate system which further disrupts
the ecological balance while inducing nefarious
effects on human well-being (Gomes et al., 2021).
While these changes can be assessed using a wide
range of techniques, remote sensing and GIS offer a
deep-rooted technology that helps to monitor, ana-
lyze, map, and forecast future land use scenario, to
understand patterns of change in temporal and spatial
aspects. The analysis of the LULCC of the Bamenda
Mountains chain for the studied years (1988-2022)
was computed, and LULC maps were generated. The
overall accuracies obtained for Landsat TM (95.83%),
ETM+ (94.25%), and OLI-TIRS (94.48%) for the
years 1988, 2003, and 2022, respectively (Table 4)
were authentic. Also, the kappa statistics for Landsat
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™ (0.94), ETM+ (0.91), and OLI-TIRS (0.92) the study. The kappa coefficient and overall accura-
for the years 1988, 2003, and 2022, respectively cies were above 90%, indicating a high level of sat-
(Table 3), beefed up the accuracy and reliability of isfaction of the classification performance (Tadese

@ Springer



Environ Monit Assess (2023) 195:1053

Page 21 of 27 1053

et al., 2021; Lahon et al., 2023). These outcomes
coincide with the current findings of Weslati et al.
(2023) in the case of Mellengue catchment area of
North Africa, and Akdeniz et al. (2023) in the case of
Belek tourism center of Turkey.

Six LULC classes (Table 4) were mapped, and
the resulting outcomes revealed they transitioned dif-
ferently throughout the study period (1988-2022).
For instance, the alteration from the natural vegeta-
tion to other land cover categories such as cultivated
area (1500.3 ha), built-up (2014.29 ha), and bare
area (513.36 ha) points to the diversity of underly-
ing causes and the severity of land use intensity
in Mezam. A wholesale of studies attribute LULC
configuration to population growth (Ishtiaque 2017;
Rimal et al., 2018; Wang et al., 2021) and meagerly
to other factors. It is important to highlight that
population growth has a multiplier effects on both
human well-beings and the natural environment. Over
the years, the Bamenda Mountains chain has been
severely infringed by the rapidly growing popula-
tion of Mezam division due to the constant quest for
food, water, energy resource, construction material
and other valuable resources. Additionally, just like
in the entire country, over 70% of the active popu-
lation in Mezam is involved in crop production and
livestock-rearing activities (Awazi, 2022). Contextu-
ally, this area constitutes an integral part of Western
Highlands of Cameroon habitually referred to as the
breadbasket of the Central African sub-region, due to
the great quantity of food and cash crop production in
the region (Kimengsi et al., 2022). However, popula-
tion expansion raises alarms regarding the effects of
urbanization and the invasion of marginal lands due to
urban sprawl, resulting to the configuration of the nat-
ural landscape that may potentially compromise food
security in Mezam and across the national territory.
Nevertheless, these configurations do not come as a
surprise as such trends are not new in many develop-
ing countries of the world (Bruggeman et al., 2016;
Wang et al., 2021). As long as the transformation of
the natural land to agricultural fields (dominant activ-
ity of the area) comes with livelihood benefits, future
land use changes are inevitable. Therefore, invest-
ments in agriculture within Mezam division and
across the national territory should take into account
sustainable environmental practices like agroforestry
by incorporating fast growing trees like Sesbania
sesban and Calliandra calothyrsus amid crops. This

suggestion aligns with Awazi and Tchamba (2019)
who highlighted agroforestry as a climate change
mitigation strategy for smallholder farmers in the
North West region of Cameroon. To complement this
action, the urban population should be educated on
the need to embrace renewable energy usage. These
actions serve as a blueprint to fulfilling the social
responsibility of reducing carbon dioxide emissions
which goes in line with sustainable development
goals “Goal 7: Ensure access to affordable, reliable,
sustainable and modern energy for all” and “Goal 13:
Take urgent action to combat climate change and its
impacts” (Matte et al., 2015; Sachs et al., 2022; Jan
et al., 2023).

Patterns of change of land use and land cover

The shrinkage of the vegetation cover from 1988 to
2022 to the benefits of built-up and agricultural lands
comes with detrimental impacts on the natural envi-
ronment. For instance, the increase in cultivated land
and the built-up area (Fig. 7, Table 5) throughout
the study period is linked to the population growth
trends of Bamenda. Studies highlight that population
growth goes in line with the occupation of marginal
lands due to urbanization (Hyandye & Martz, 2017,
Amgoth et al., 2023). Increased population also sky-
rockets food demand, thus the expansion of agricul-
tural lands (Said et al., 2021). Human encroachment
into the forest and the replacement of the forest vege-
tation by settlements and crop lands are also reported
in mountainous areas of the North West region of
Cameroon (Maghah et al., 2021; Fogwe et al., 2019).
The above results necessitate the visitation of regula-
tions and laws governing forests and protected areas
in Cameroon. Recent studies on LULC change mostly
at the frontiers of protected areas put forward the need
for more research and policymakers to revise policies
and ensure their execution in protected areas (Tesfaw
et al., 2018; Said et al., 2021).

Future land use and land cover change

In Cameroon, varied empirical studies have assessed
LULC changes across different regions (Ewane and
Lee, 2020; Ewane et al., 2023; Siwe & Koch, 2008;
Mertens & Lambin, 2000), but only few of such
works foretold future LULC scenarios (Moskolai
et al., 2022; Saputra and Lee, 2019). In like manner,
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several studies have uncovered the spatio-tempo-
ral dynamics of LULC in the North West region of
Cameroon with emphasis on watershed management
(Temgoua et al., 2018), ecological changes (Mofor
et al., 2022), and spatio-temporal NDVI (Maghah
et al., 2021), while others relate spatio-temporal alter-
nations to protected zones and agro-pastoral conflicts
(Ntangti et al., 2019). However, none of these studies
considered predicting the future land use scenarios of
this region, thus validating the relevance of the cur-
rent study. By assessing the status and spatio-tempo-
ral dynamics of the Bamenda Mountains while fore-
casting future land use scenarios, this study will bring
clarity and closure to prolonged debates surrounding
land use change in the North West region of Came-
roon and other tropical mountainous ecosystems.
Markov chain model utilized in this research is a
stochastic framework, modeling temporal or sequen-
tial data that has been widely used to display areas of
land use changes at great spatial scales (Huang et al.,
2008). This model, with the help of the transition
probability matrix, shows how possible one LULC
category can change into another LULC category
(Vazquez-Quintero et al., 2016; Halmy et al., 2015).
CA-Markov chain model is more appropriate for land
use and land cover change prediction (Camara, 2020;
Subedi et al., 2013; Kumar et al., 2014). This model
is suitable especially when the changes and the direc-
tion of the changes are complex to define. This model
is an appropriate fit for the Bamenda Mountains chain
forest, as this zone is a multi-faceted pluto-volcanic
structure with no clear cut demarcation between
its mountains (Zangmo et al., 2017; Wantim et al.,
2013). The model validation of the current study
using the kappa index of agreement (KIA) compared
the simulated and the actual 2022 LULC map. The
KIA statistics (Table 2) showed a high level of resem-
blance between the simulated and the actual 2022
LULC map. The overall accuracies (95.83%, 94.25%,
and 94.48% for 1988, 2003, and 2022 images, respec-
tively) and the overall kappa index of agreement
(Kno, 97.14%; Klocation, 95.06 %; KlocationStrata,
95.06%; and Kstandard, 92.47%) indicated a high
level of agreement standards between the simulated
and actual 2022 LULC map (Gashaw et al., 2017,
Singh et al., 2015; Mosammam et al., 2017). The
CA-Markov chain model thus proved to be a reli-
able and an effective tool to predict and analyze the
2056 LULC changes. The 2056 figures showed a

@ Springer

great reduction of the vegetation cover (montane for-
est and savanna) at the expense of built-up area and
cultivated land (Table 8, Fig. 11). These results are in
line with the findings of Gashaw et al. (2017) in the
Blue Nile Basin of Ethiopia; Yirsaw et al. (2017) in
the coastal area of Su-Xi Chang in China; and Liping
et al. (2018) in a hilly landscape of Jiangle in China.
The expansion of agricultural lands and settlement at
the detriment of the natural environment (Table 8,)
everything being equal, could be attributed to future
anthropogenic activities due to future population
growth. The 2056 predicted LULC could be used as
a guide for decision-makers, land use management
planners, and conservationists of the study area for
sustainable land management.

Conclusion and recommendations

Analyses of land use and land cover change (LULCC)
are essential to inform decision-makers on plan-
ning policy of land use. There have been significant
LULCC of the Bamenda Mountains, in the North
West region of Cameroon. Following the field obser-
vations, the Ground Control Points collected, the key
informant interview, and focus group discussions,
the changes observed on this site are largely attrib-
uted to population pressure and livestock rearing. The
main finding of the present research work revealed
a substantial change of the Bamenda Mountains for
the past 34 years (1988-2022). Cultivated land and
built-up all increased throughout the study period at
the expense of the vegetation cover that shrank drasti-
cally. The predicted figures of 2056 showed a continu-
ous reduction of montane forest and savanna 2401.92
ha (4.40%) and 25,862.67 ha (47.39%), respectively.
Bare area is expected to drop in 1956 (2905.92 ha
(5.32%)). The above decrease, when compared to
2022 figures, represents a loss of 3.97%, 4.53%, and
0.57%, respectively. The losses observed are gained
by built-up and cultivated land (5.72% and 3.39%,
respectively), covering surface areas of 6364.89 ha
(11.66%) and 17,008.56 ha (31.17%), respectively.
The vegetation cover of the study area is expected
to continue reducing. In 2056, montane forest,
savanna, and bare area are expected to drop by 3.97%,
4.53%, and 0.57%, respectively, when compared to
the 2022 figures, whereas the shrinkage observed
will be gained by built-up and cultivated land (5.72%
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and 3.39%, respectively). The direction of LULCC
viewed by the respondents was concordant with the
satellite image interpretation results. The main driv-
ing forces of the Bamenda Mountains change are
anthropogenic activities. This implies that, ecosystem
alteration, loss of biodiversity, and the deterioration
of forest products are likely to continue with disas-
trous consequences on the environment and the liveli-
hood of the local community. Nevertheless, the bird
life study in the Kilum Ijim Forest reserve of Oku in
the North West region of Cameroon suggests suites
of bird species to be indicators of vegetation changes.
Remote sensing and GIS technology are thus a reli-
able, competitive, and cost-effective technology hav-
ing the potentials to map out, obtain information, and
analyze land use changes from large portions of the
earth over long periods.

To ensure the sustainable management of the envi-
ronment of this site, improved land conservation tech-
niques, afforestation and reforestation, and off-farm
activities are crucial. Also, organizing campaigns of
education and information to sensitize the general
public of the Mezam division is possible. Ensuring
clear land tenure policies in the North West region
in particular and in Cameroon at large is essential for
land management planning.

The civil conflict in the North West and South
West regions of Cameroon has been considered a
human right crisis by the international community,
given it emanated from the marginalization of the
Anglophones through gradual infiltration of the
French educational and legal systems into the Eng-
lish systems. The root cause of the crisis may be
traced back to violating the 1961 constitution that
bind both parties with equal status. Meanwhile,
the civil unrest in the North West and South West
regions constitutes one of the causes of landscape
configuration in both regions.

This conflictual civil war needs an immediate
intervention. This could be possible through a genu-
ine and inclusive dialogue between leaders of the
opposing parties (the state and Anglophone lead-
ers) in a neutral land (outside Cameroon) and in the
presence of international mediators (UNO, Cam-
eroons’ colonial powers and other countries with
strong bilateral ties with Cameroon). Human rights
should be respected; thus, Anglophone detainees

and those already imprisoned should be released
and given a chance to participate in the dialogue. A
disarmament committee with representatives from
both parties should facilitate the ceased fire process.

Satisfying these three measures can build confi-
dence and trust amongst the parties concerned and the
general population. Then, upon settling for a gentleman
agreement, a reconstruction committee can rebuild
the affected regions. This may not happen overnight.
However, it could be the gateway out of the crisis and a
starting point to landscape reconstruction in the region.

Future scholars could consider the effect of civil
conflicts on landscape dynamics in the North West
and South West regions of Cameroon. Also, ana-
lyzing the relationship between landscape configu-
ration and land tenure is crucial, as the tenure in
place favors the haphazard occupation of land in the
North West region of Cameroon.
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