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Abstract  Change in land use and land cover 
(LULC) contributes in worsening ecological issues. 
Studying the trends of change in land use is highly 
significant to deal with global climate change and 
sustainable development. The aim of this paper is 
to evaluate the spatial-temporal dynamics of LULC 
of the Bamenda Mountains (BM) in the North 
West region of Cameroon, over a period of 34 years 
(1988–2022) and predict 34 years (2022–2056) future 
land use scenario of this site using time series satel-
lite imagery (MSS, TM, ETM+, and OLI-TIRS) and 
ancillary data and to comprehend the driving forces 
of land use/land cover change (LULCC). The trends 
of LULCC were quantified; LULC maps were derived 
by classifying time series satellite images. Six LULC 
categories were identified during the study period 

(1988–2022). The research revealed a significant 
LULCC of the BM which can be justified by increase 
in the human population observed in the study area 
and the desire to extend agricultural lands to sus-
tain the growing population. Overall, cultivated area 
5684 ha (10.47%), 10680 ha (19.57 %), and 15163 
ha (27.78%) and built-up area 449 ha (0.83%), 996 
ha (1.83%), and 3242 ha (5.94%) for the study years 
1988, 2003, and 2022, respectively, were all on the 
increase throughout the study period at the expense 
of other land cover types. The predicted figures of 
2056 showed a continuous reduction of montane for-
est and savanna: 2401.92 ha (4.40%) and 25,862.67 
ha (47.39%), respectively. Bare area is expected 
to drop in 2056 (2905.92 ha (5.32%)). The above 
decrease, when compared to 2022 figures, represents 
a loss of 3.97%, 4.53%, and 0.57%, respectively. The 
losses observed are gained by built-up and cultivated 
land (5.72% and 3.39%, respectively), covering sur-
faces areas of 6364.89 ha (11.66%) and 17,008.56 
ha (31.17%), respectively. The above findings sug-
gest that population growth is likely the major men-
ace to the natural environment. It is thus safe to say 
that substantial LULCC was observed throughout the 
study period and will undoubtedly continue if noth-
ing is done. This necessitates urgent measures such as 
reforestation and afforestation, encouraging off-farm 
activities and even improving technologies to combat 
the rate of forest degradation of the BM. Addition-
ally, rebuilding trust between the French and English 
Cameroons through dialogue is premodial, to end the 
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curent conflictual civil war and lessen the landscape 
configuration in Bamenda.

Keywords  LULC change · Change prediction · 
GIS · Remote sensing · Mount Bamenda(BM)

Introduction

Land use and land cover change (LULCC) has been 
an alarming situation in both developed and less 
developed countries of the world, due to their reper-
cussions on sustainable development and far reach-
ing effects on other segments of the economy. For 
the past years, land resource has always been closely 
associated with economic, social, and other anthro-
pogenic activities (Alemayehu et al., 2019). The pat-
terns of land use and land cover (LULC) of a place 
is thus the result of the socio-economic, natural fac-
tors, and their spatiotemporal utilization by humans. 
LULC dynamics are extended and accelerated with 
the main driving force being population growth. 
These landscape alterations play a significant role in 
natural resource deterioration and have repercussions 
on man (Leh et  al., 2013; Alemayehu et  al., 2019; 
Chen et al., 2022).

The world population is growing at a speedy rate, 
and recent forecasts suggest that the planet may con-
tain 9.8 billion people by 2050 or 11. 2 billion peo-
ple by 2100 (DESA, 2017). This implies that urban 
growth will have broad effects on environmental, 
social, and economic services that mankind heav-
ily relies on (Mattsson et  al., 2022). Continuous 
encroachment on the land use and land cover has an 
important impact on ecosystems with a great influ-
ence on the diversity of the biotic and abiotic com-
ponents of the ecosystem as well as the ability of the 
landscapes and humans to cope with climatic, socio-
economic, and political disturbances. It is therefore 
necessary to be knowledgeable about these superfi-
cial processes to forecast future scenarios to ensure 
sustainable development (Kibreab, 1996; Ahlcrona, 
1989; Olagunju, 2008).

LULCC can affect the energy balance, soil fertility, 
and the biogeochemical cycles. A constant watch and 
prediction of the changes are therefore necessary to 
ensure the environment is managed sustainably (Lupo 
et  al., 2001; Kindu et  al., 2013). Population pres-
sure and other significant drivers such as government 

policies and poverty have accelerated the LULC 
dynamics of tropical mountains and have paved a way 
to tropical ecosystems losses (Kidane et  al.,  2012; 
Said et al., 2021). This goes against the 2030 Agenda, 
where the UN (United Nations) established its Sus-
tainable Development Goal 15 aimed to “Protect, 
restore and promote sustainable use of terrestrial eco-
systems, sustainably manage forests, combat deser-
tification, and halt and reverse land degradation and 
halt biodiversity loss.” Sustainable Mountain Devel-
opment is also a major object of interest of Chap-
ter 13 of Agenda 21, which stipulates that mountains 
are great sources of water, energy, biodiversity, agri-
cultural products, and minerals (Maghah et al., 2021; 
Sachs et al., 2022; Jan et al., 2023).

Mountain ecosystems are rapidly degraded 
although they are sources of many water bodies, 
energy, biodiversity hotspots, and food reservoirs 
for humankind (FAO, 2017). These unique milieus 
sustain the population around and even beyond the 
mountains by regulating the quality and quantity of 
water originating therein. Mountain ecosystems are 
global assets but constantly threatened by anthro-
pogenic activities and to an extent by natural dis-
turbances (Gratzer & Keeton, 2017; Maghah et  al., 
2021).

The Bamenda Mountains (BM) in the North West 
region of Cameroon is a unique ecosystem and home 
to diverse flora and fauna of promising potentials. 
Animal rearing and agriculture are the principal 
activities influencing the livelihood and the economic 
well-being of the local population of the Mezam divi-
sion in the North West region of Cameroon (Awazi, 
2022). Mountainous forests being vulnerable are con-
stantly degraded due to pressure from anthropogenic 
activities and natural disturbances. Forest degrada-
tion is generally a gradual process within the forest 
that adversely alters its characteristics, which affects 
the forest quality, there by compromising its ability 
to generate goods and services for mankind and the 
ecosystem. Forest lands can be altered both directly 
through overexploitation, overgrazing, and crude 
agricultural systems and indirectly through climate 
variability, epidemic, and landslide (Simula, 2009).

Few studies have analyzed land use/land cover 
change and their drivers (meanly anthropogenic 
activities) in Cameroon and in the north west region 
(Mofor et  al., 2022; Maghah et  al., 2021; Ntangti 
et  al., 2019; Asaha et  al., 2016; Ewane, 2021; 
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Asong et  al., 2019; Temgoua et  al., 2018). Mean-
while, a study by Forboseh et al. (2003) monitored 
bird species at Kilum Ijim Mountain Forest reserve 
to uncover the status of the forest and the individ-
ual species, thus considering suites of bird species 
as indicators of vegetation changes. However, no 
studies considered analyzing both the driving forces 
of LULCC and forecasting the future land use sce-
nario of the Bamenda Mountains. The conversion of 
the initial land cover (vegetation) of the Bamenda 
Mountains to other land cover types notably built-
up and agricultural land is mainly to sustain the 
growing population.

This study utilized remote sensing and GIS tech-
nology, based on time series satellite images to ana-
lyze the LULCC of the Bamenda Mountains and 
change prediction of this site using Markov chain 
model. This was initiated to inform policymakers and 
ensure the sustainable management of this site. The 
Markov chain model (MCM) for time series analy-
sis and prediction used in this study is a stochastic 
model, modeling temporal or sequential data. This 
model predicts the future state of a system basing on 
the immediately preceding state and has been exten-
sively used to model areas of land use changes at 
great spatial scales (Huang et al., 2008; Tadese et al., 
2021).

Remote sensing is a competitive and cost-effective 
technology used to map out and obtain information 
from large portions of the earth. GIS and the remote 
sensing technology are efficient in mapping and ana-
lyzing land use changes and the mineral resources 
distribution, (Ahlcrona, 1989; Tematio, 2016) using 
multi-spectral scanner (MSS), thematic mapper 
(TM), and enhanced thematic mapper (ETM) data 
from Landsat satellite images. This technology has 
been used in many studies to identify features of land 
use and land cover changes and detect soil degrada-
tion activities (Mainguet, 2012; Leumbe et al., 2012). 
Quality image resolution makes it possible to moni-
tor, analyze, and interpret land use changes for differ-
ent periods of time to know the trends, the reasons, 
and the manner in which the changes occur (Rindfuss 
et al., 2004; Shiferaw & Singh, 2011).

As a prelude to the Bamenda Mountains forest 
resource conservation, vis-à-vis its indiscriminate 
exploitation, it is worth taking actions for the sustain-
able management of this site for the next generations 
to enjoy similar good and services offered.

The aim of this paper is to evaluate the spatial and 
temporal dynamics of LULC of the Bamenda Moun-
tains (BM) in the North West region of Cameroon, 
over a period of 34 years (1988–2022) and predict 34 
years (2022–2056) future land use scenario of this site 
using time series satellite imagery (TM, ETM+, and 
OLI-TIRS) and ancillary data and to understand the 
driving forces of the LULCC. The present research 
paper provides the entire Mezam division (North 
West region of Cameroon) and policymakers with the 
present and the future views of the Bamenda Moun-
tains (BM), so progress can be accelerated towards 
achieving Sustainable Development Goals (SDGs) 
and eventually Sustainable Development (SD).

Materials and methods

Description of the study area

The present study was carried out in the Mezam divi-
sion (Fig. 1) with Bamenda as the head quarter, the 
city capital of the North West region of Cameroon.

But the study area considered in this research work 
is the Bamenda Mountains chain forest (BMCF) or 
the Bamenda Mountains (BM). This area is between 
latitude 5°46′00″N to 5°56′30″N of the equa-
tor and longitude 10°10′00″E to 10°16′30″E of the 
Greenwich meridian, with an altitude of 2621 m. 
The Bamenda Mountains (BM) is situated exactly 
between Mount Bamboutos in the SW and Mount 
Oku in the NW with altitudes of 2740 m and 3011 m, 
respectively, all constituting the Western Highlands 
of Cameroon (WHC), along the Cameroon Volcanic 
Line (CVL) or Cameroon Line (CL) (Fig.  2). The 
BM is at the central part of the WHC, which is practi-
cally a continual volcanic structure with no clear cut 
demarcation between the mountains. This site (BM) 
has many geomorphological structures such as cal-
deras, escarpments, volcanic dykes, steep slopes, 
domes, plateau, plains, and even valleys (Guedjeo 
et al., 2017; Zangmo et al., 2017; Chenyi et al., 2017; 
Dedzo et  al., 2013) with two main calderas: Santa-
Mbu and Lefo.

The topography of this site is accidental, originat-
ing from the variety of volcanic activities that have 
occurred. It also has a conducive tropical climate 
of two seasons: a long rainy season from March to 
October with a short dry season from November to 
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February. Mean temperature is between 21 and 25 
°C with annual rainfall between 1800 and 2500 mm 
(Guedjeo et  al., 2017; Yufenyuy & Nguetsop 2020). 
Soils here are mostly lateralitic characterized with 
red color, also suitable for agricultural practices espe-
cially when properly irrigated and fertilized. The veg-
etation cover of the BM is mainly of savannah and 
forest types.

The Bamenda Mountains chain forest harbors 
many species of plants and animals. The plants pre-
sent here are of great therapeutic values. The location 
of the Bamenda Mountains chain gives it a special 
importance. Like any other mountainous forest, this 
site is rich with abundant flora and fauna, goods and 
services to mankind. It is as well the source of many 
water bodies.

The CVL is the principal multifaceted plutono-vol-
canic passing through Cameroon. This volcanic line 
is 1600-km long and 100-km wide (Zangmo et  al., 
2017), extending from the Gulf of Guinea in the 
Atlantic ocean up to Lake Chad in the African con-
tinent (Fig. 3). Essential studies have highlighted that 
the CL is subjected to threats of diverse origins, and 
these milieus have pulled and encouraged an active 
population of diverse origins and nurtured their set-
tlement during the past years (Dedzo et  al.,  2013; 
Wantim et  al., 2013; Guedjeo et  al., 2013; Zangmo 
et al., 2017).

Data acquisition and analysis

The data used in this research work were mainly 
imagery from remote sensing, topographic maps, 
and field observations. Data from GPS records (train-
ing sites and ground control points (150)) assisted in 
the process (Fig.  5). Related literatures as well and 
reconnaissance information assembled from the field 
of study (key informant interview and focus groups 
discussions) were also used. Several aerial images 
from Google Earth application were used as well to 
assist in the classification process. All relevant infor-
mation was collected and analyzed in support of the 
issue being investigated. These data helped to com-
pliment the methods used in the study. The satellite 
images used were downloaded from the United States 

Geological Survey (USGS) website (http://​glovis.​
usgs.​gov/).

The landscape dynamics was investigated using 
Landsat TM (thematic mapper), ETM+ (enhanced 
thematic mapper), and OLI-TIRS (operational land 
imager and thematic infrared sensor) singly captured 
in 1988, 2003, and 2022 (Table 1). The above remote 
sensing dataset used for the research work was cloud-
free and of the dry season to ensure the land cover 
and mostly the vegetative cover which is the topic of 
the study could be perceived.

Image preprocessing and classification methods

ERDAS IMAGINE 11, ArcGIS 10, and IDRISI 
SELVA 17.0 software were used for this study to per-
form the image processing functions required to com-
plete the land cover classification. Using this method, 
the area of interest (AOI) from all the land cover 
types in the image was extracted. The images of the 
study area were taken through three stages to generate 
land cover classes of the study area. These included:

–	 Feature identification using a spectral profile
–	 Choice of training data (signatures)
–	 Choice of appropriate classification methods

All images were atmospherically and geometri-
cally corrected using ERDAS IMAGINE 11 to avoid 
haze,  sensor noise, and to adjust loss or missing data 
due to the position of the sun and satellite calibra-
tion (Feranec et  al., 2007; Tadese et  al., 2021). The 
images were projected to UTM (Universal Transverse 
Mercator) zone 32 by the World Geodetic System 84 
(WGS84) datum. Layer stacking, image subsetting, 
image enhancement, NDVI, BI, and color composite 
were performed on all the images of the study dates 
to make objects more visible to lessen omission and 
confusion errors and ensure more accuracy during the 
classification process (Wubie et al., 2016; WoldeYo-
hannes et al., 2018; Temgoua et al., 2018).

The present study made use of a hybrid method of 
image classification (both unsupervised and super-
vised) using IDRISI SELVA 17.0, as summarized in 
Fig.  6. An unsupervised classification was to obtain 
main training parcels for field verification followed 
by a supervised classification through maximum 
likelihood algorithm for the classification (Temgou 
et al., 2018; Bufebo & Elias, 2021; Wang et al., 2021) 

Fig. 1   Location map of the study area◂
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of Landsat TM, ETM+, and OLI-TIRS images of 
the study dates. The above was followed by a time 
series analysis and prediction using IDRISI SELVA 
modeling.

After the classification of each image, they were 
imported into the ArcMap Catalogue package to gen-
erate maps used to compare each image date for bet-
ter understanding the changes on the Bamenda Moun-
tains chain over time. The classification technique 
adopted in this study was to make sure it suits the 
goal of the study. At the end, the LULC maps were 
derived with 6 classes.

Normalized Difference Vegetation Index (NDVI)

The NDVI which is the index of plant greenness was 
calculated for all the images of the study. The main 
reason for calculating this index was to support the 
image classification process. This index shows pho-
tosynthetically active vegetation, the amount of chlo-
rophyll present in plant leaves, and thus an indica-
tion of vegetation quantity (Asong et al., 2019). The 
NDVI was gotten from the near-infrared (NIR) and 
the visible red light bands of the TM, ETM+, and 
OLI-TIRS satellite imageries of the study. Generally, 

photosynthetically active or abundant vegetation 
absorbs more incoming red light and reflects close 
to 25% of NIR, whereas scanty or unhealthy veg-
etation reflects most of the visible red light and less 
NIR light. The NDVI is calculated using the formula 
below (Asong et al., 2019):

 where NIR = near-infrared band value for a cell
RED = red band value for a cell
NDVI values range from −1 to +1 where values 

greater and positive indicate highly photosyntheti-
cally active vegetation or dense vegetation recorded 
by the sensor and negative or values less than zero 
have no ecological meaning they actually indicate 
non-vegetative classes (Weier & Herring, 2000).

Brightness Index (BI)

The Brightness Index (BI) characterizes the aver-
age of the brightness of a satellite image (Ouerche-
fani et al., 2009). It was computed using the formula 
below (Samiee et al., 2018).

(1)NDVI =
(NIR − RED)

(NIR + RED)

Fig. 2   The 3D map of Bamenda Mountains (MB), within the Western Highlands of Cameroon (WHC), adapted from Guedjeo et al. 
(2017)
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Fig. 3   Cameroon map showing the CVL and the location of MB within the WHC. Adapted from Zangmo et al. (2017)

Page 7 of 27    1053



Environ Monit Assess (2023) 195:1053	

1 3
Vol:. (1234567890)

R = red band value for a cell
NIR = near infrared band value for a cell
The reason for the choice of the Normalized Dif-

ference Vegetation Index (NDVI) and Brightness 
Index (BI) was due to both indices having proven to 
be more reliable to effectively identify separate LULC 
categories of a study area (kolios and stylios, 2013).

Classification accuracy assessment

Assessing the classification accuracy is essential for 
the classified data to obviously detect changes (Wang 
et  al., 2020,  2021). The accuracy assessment of the 
classified images was achieved using 150 Ground 
Control Points (GCP) (Fig.  5) recorded with the 
help of a hand held Garmin GPS, relevant informa-
tion gathered via key informant interview, and focus 
group discussions. High-resolution Google Earth 
images (Fig.  4) and topographic maps were used as 
reference data to support the classification accuracy 
process (Fig. 6). Besides, field observations and per-
sonal knowledge about the study area also assisted. 
The classified images were compared to the reference 
data to understand the level of similarities and differ-
ences, helping to create an error matrix (Ariti et al., 
2015; Bufebo & Elias, 2021).

The classification results of the data were cross-
tabulated against the reference data to form the error 
matrices that helped to examine the classification 
accuracy. The producer’s accuracy (omission error), 
user’s accuracies (commission error), the overall 
accuracy, and kappa coefficient were calculated from 
the error matrices. Producer’s accuracy was obtained 
by dividing the samples’ number correctly identified 
by the totals of the reference data; meanwhile, the 
user’s accuracy was gotten by dividing the samples’ 
number correctly identified in each class by the clas-
sified totals (Ukrainshi, 2016; Said et al., 2021). The 
overall classification accuracy of each image of the 
study was calculated by dividing the pixels’ number 
correctly classified by the total of the sample points 
(Ukrainshi, 2016; Said et  al., 2021). The formula 
below (Bufebo & Elias, 2021) was used to calculate 
the overall accuracy.

(2)BI =
√

R2 + NIR2

(3)A =
X

Y
∗ 100

 where A = overall accuracy
X = total of correct values in the diagonals of the 

matrix
Y = total of values of a reference point
The kappa coefficient is a measure of the total 

accuracy statistic of the error matrix between the 
classified map and the reference data. The said coef-
ficient considers nondiagonal elements (Ukrainshi, 
2016; Bufebo & Elias, 2021; Said et  al., 2021). A 
value above 0.80 signifies a good classification; a 
value ranging from 0.40 to 0.80 signifies a moderate 
classification; and a value below 0.40 implies a poor 
classification (Firdaus, 2014) and thus implying the 
greater the kappa value, the authentic the classifica-
tion (Ukrainshi, 2016). The formula below (Wang 
et  al.,  2021; Firdaus, 2014; Bufebo  &  Elias, 2021; 
Said et  al., 2021) was used to calculate the kappa 
coefficient:

 where K = kappa coefficient
R = number of rows in matrix
Xii = number of observations in row i and column 

i
Xi+ = marginal totals of row i
X+i = marginal total of column i
N = total of observations in the whole error matrix

Detection of land use and land cover change 
(LULCC)

The LULC changes in terms of hectares and per-
centages were calculated for all the study dates to 
understand the trends of change between land cover 
categories of the different study periods. The change 
detection was obtained from the formulas below 
(Hassen & Assen, 2018; Bufebo & Elias, 2021; Ale-
mayehu, 2019):

(4)K =
N
∑r

i=1
xii −

∑r

i=1
(xi+ ∗ x + i)

N2 −
∑r

i=1
(xi+ ∗ x + i)

(5)Δe(%) =

(
(

X
2
− X

1

)

X
1

)

∗ 100

(6)Δe rate =

(

ha

year

)

=

(
(

X
2
− X

1

)

Y

)
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 where ∆e(%) = percentage of change in LU area and 
LC type between initial time X1 and final time X2.

X1 = LULC type at the initial year
X2 = LULC type at the final year
Y = time interval between the final and initial 

years

Prediction of LULCC

Markov chain model which is a stochastic model, 
modeling temporal or sequential data, has been exten-
sively used to model areas of land use changes at great 
spatial scales (Huang et al., 2008). The present study 

Fig. 4   Google image of the Bamenda Mountains, January 2021
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Fig. 5   Ground-truth activity in the Bamenda Mountains October 5–20, 2022

Table 1   Details of Landsat 
satellite images

Satellite image Sensor Acquisition date Path/row Resolution Band Source

Landsat 5 TM 1988/01/22 187/056 30*30m 6 USGS
Landsat 7 ETM+ 2003/01/10 186/056 30*30m 8 USGS
Landsat 8 OLI-TIRS 2022/01/22 186/056 30*30m 11 USGS
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made use of the Markov chain model (MCM) for time 
series analysis and prediction using IDRISI SELVA 
modeling where the land use change for the year 2056 
was predicted. To achieve this objective, the 1988, 
2003, and 2022, land cover maps were made using a 
maximum likelihood classification technique. From 
here, the land cover image (t-1) of 1988 and the land 
cover image (t = 1) of 2022 were considered to run a 
Markov model. This model generated both the transi-
tion probability file and the transition area file. The 
transition probability shows how a pixel is likely to 
change to a different LU and LC or remain the same 
in the subsequent time. But, a transition area matrix 
indicates a total area likely to change the subsequent 
time (Said et al., 2021). The results obtained from the 
Markov model joined with the suitability maps were 
used to run the CA-Markov model employing a 5 × 5 
contiguity filter. From here, the simulated 2056 map 
was produced.

Transition suitability maps

The transitional suitability maps which show the 
probability of a pixel to change to another class or 
remain the same (Wang et  al., 2021) were obtained 
using the multi-criteria evaluation (MCE). The MCE 

integration of various driving forces helps to develop 
the single index of evaluation (Wang et al., 2021, El-
Hallaq & Habboub, 2014). The driving forces are dif-
ferent depending on the study area. The authors’ good 
knowledge of the study area and the difficult nature 
of the terrain coupled with factors such as socio-eco-
nomic, political, and physical closeness to existing 
LULC helped to determine the transition rules. The 
transition suitability maps were calculated using the 
distance to settlement areas, main road, cultivated 
areas, water bodies, and slopes. The digital elevation 
model (DEM) with road maps and other infrastruc-
tures was obtained from the Bamenda City Council. 
The standardized factor maps (0–1) were made using 
the fuzzy membership functions, with 0 represent-
ing unsuitable locations and 1 representing perfect 
locations. The weights of the driving forces were 
therefore derived from the analytic hierarchy process 
(AHP).

Prediction validation of LULCC

Model validation is primordial in the process of 
modeling (Said et al., 2021; Memarian et al., 2012). 
Studies (Baysal,  2013; Brown et  al.,  2013; Katana 
et al., 2013) have highlighted varieties of methods for 

Table 2   Statistics of projection validation for 2022 reference and simulated LULC

Information of quantity

Information of allocation No [n] Medium [m] Perfect [p]

Perfect[P(x)] P(n) =  0.5783 P(m) =  0.9801 P(p) =  1.0000
PerfectStratum[K(x)] K(n) =  0.5783 K(m) =  0.9801 K(p) =  1.0000
MediumGrid[M(x)] M(n) =  0.5380 M(m) =  0.9523 M(p) =  0.9606
MediumStratum[H(x)] H(n) =  0.1711 H(m) =  0.3192 H(p) =  0.3103
No[N(x)] N(n) =  0.1711 N(m) =  0.3192 N(p) =  0.3103

AgreementChance =  0.1711
AgreementQuantity = 0.1600
AgreementStrata = 0.0000
AgreementGridcell = 0.6732
DisagreeGridcell = 0.0378
DisagreeStrata = 0.0000
DisagreeQuantity = 0.0399

K index Kno = 0.9714
K index Klocation = 0.9506
K index KlocationStrata = 0.9506
K index Kstandard = 0.9247
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model validation such as chi-square and F-test of the 
observed and simulated images, the kappa coefficient 
and Cramer’s V, as well as the quantity and alloca-
tion disagreements. To achieve the prediction valida-
tion results the present study made use of kappa index 
of agreement (KIA) technique using the VALIDATE 
module in IDRISI SELVA to examine the level of 
resemblance between the actual and simulated 2022 
LULC. The above technique provided the validation 
statistics for the reference 2022 LULC and the com-
parison 2022 LULC (Table 2). The validation module 
observes the agreement between the LULC maps of 
the same classes (Gupta et al., 2020). The cross-tab-
ulation approach was used to ascertain the magnitude 
of transformations of each LULC, for model valida-
tion after which the 2056 future LULC map was 
projected.

Results

Assessment of the classification accuracy of the 
classified 1988, 2003, and 2022

The kappa statistic is one of the effective and widely 
used methods of measuring the model capacity to 
predict (Hua, 2017; Wang et al., 2021). Studies (Viera 
& Garrett, 2005; Manonmani & Suganya, 2010) have 
also highlighted that a kappa value < 0 signifies no 
agreement; 0.01–0.20 implies slight; 0.21–0.40 as 
fair; 0.41–0.60 as moderate; 0.61–0.80 as significant; 

and 0.81–0.99 as nearly perfect agreement. For the 
present study to be reliable and accurate, the overall 
accuracy was computed for all the classified images 
of the study periods (1988, 2003, 2022) with values 
95.83%, 94.25%, and 94.48%,  kappa statistics values 
of 0.94, 0.91, and 0.92, respectively (Table  3). The 
above statistics thus show a reliable level of agree-
ment for the study.

Analysis of LULC change of the Bamenda Mountain

By analyzing land use and land cover, we can com-
prehend important changes that have occurred on 
land like loss of biodiversity, degradation of the natu-
ral environment, and landscape configuration (Wang 
et al., 2021).

The classification techniques used in this study 
yielded 6 LULC classes: montane forest, savan-
nah, cultivated area, bare area, built-up, and lake 
(Table  4). Accordingly, the landscape configuration 
of the study area can be easily perceived from 1988 to 
2022 (Fig. 7, Table 5).

The present study demonstrated the effectiveness 
of remote sensing and GIS techniques in mapping, 
classifying, and finalizing the different land use and 
land cover categories of the Bamenda Mountains 
chain forest from 1988 to 2022. Looking at the analy-
sis (Fig.  7, Table  5), it is readily perceived that the 
land cover types vary, followed by substantial altera-
tion throughout the study period. The characteris-
tics of these land cover classes are well explained at 
the research methodology section above (Table  4). 
The Bamenda Mountains occupy the northeastern 
and south western part of the map, presenting the 

Fig. 6   Flow chart of remote sensing methodology framework 
for the study

◂

Table 3   Accuracy 
assessment and kappa 
coefficient of agreement of 
the classified images

Bold simply signifies emphasis

LUC classes L5 TM 1988 L7 ETM+ 2003 L8 OLI 2022

Producer’s 
accuracy 
(%)

User’s 
accuracy 
(%)

Producer’s 
accuracy 
(%)

User’s 
accuracy 
(%)

Producer’s 
accuracy 
(%)

User’s 
accuracy 
(%)

Lake 100.00 90.00 90.00 90.00 81.82 90.00
Savannah 98.80 97.59 98.02 96.12 98.67 94.87
Built-up 90.00 90.00 75.00 90.00 100.00 90.00
Forest 91.40 96.97 84.62 91.67 85.71 92.31
Cultivated A. 100.00 93.75 96.43 93.10 95.35 97.62
Bare A. 93.80 93.75 90.00 90.00 81.82 90.00
Overall accuracy 95.83% 94.25% 94.48%
Kappa coefficient 0.94 0.91 0.92

Page 13 of 27    1053



Environ Monit Assess (2023) 195:1053	

1 3
Vol:. (1234567890)

vegetation which is the main focus of interest in the 
study and other LULC categories. The montane for-
est (dense vegetation on mountain top) is gradually 
degraded followed by the savannah mainly on steep 
slopes. We also have both clustered and linear settle-
ment patterns around towns (Bamenda and Bambili) 
confirming the saying that goes: “where the road 
passes, development follows” (Lim, 1999). Built-ups 
are as well scattered throughout the study area, with 
cultivated areas and bare areas at their proximities 
(Fig. 7). A small proportion of the surface area of the 
study site is covered by water notably lakes.

Overall, built-up and cultivated areas are all on the 
increase throughout the study period at the expense 
of other land cover types. These built-up areas (449 

ha (0.83%); 996 ha (1.83%); 3242 (5.94%)) and cul-
tivated areas (5684 ha (10.47%); 10680 ha (19.57%); 
15163 (27.78%)) for the years 1988, 2003, and 2022, 
respectively (Table  5), can be justified by the popu-
lation growth of the Mezam division. Population 
growth and its repercussions on the natural environ-
ment are common worldwide and severe in devel-
oping countries (Alemu et  al., 2012). Likewise, the 
Mezam population is estimated at 5234.127 inhab-
itants, with around 86 persons per km2, and when 
compared to the past, the population trend is on 
the increase. The rural population of this division 
depends mainly on agriculture and livestock rearing. 
With the increased human and livestock population, 
agricultural lands are on the increase at the detriment 

Fig. 7   LULC maps of 1988, 2003, and 2022

Table 4   LULC classes for the study dates (1988–2022) and their descriptions

LULC classes Descriptions

Montane forest Area of dense vegetation, made up of both natural and planted forests, forming almost closed canopies, on the 
mountains

Built-up area Areas occupied by commercial and residential buildings and transportation facilities
Savanna Grassland areas with herbaceous plants, short and stunted trees, grazing fields
Cultivated area Areas used for the growing of different types of crops
Bare area Open landscape mainly rocky with little or no vegetative cover
Lake Areas occupied by extensive standing or slowly moving water bodies
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of the natural environment. Looking at the forest veg-
etation, it can be seen that the montane forest dropped 
from 1988 to 2003 (12,138 ha (22.37%); 4509 ha 
(8.26%), respectively) with a slight increase in 2022 
(4588 ha (8.41%)) as seen in (Table  5, Fig.  7). The 
sudden increase in montane forest from 2003 to 2022 
could be attributed to the plantation of new trees 
under agroforestry projects and practices (Awazi 
et  al.,  2022). The savannah that occupied the high-
est surface area in 1988 (30288 ha (55.81%)) (Fig. 7, 
Table 5) dropped throughout the study period. Water 
body that occupied the smallest proportion of the 
study area remained unchanged throughout the study 
period. It is vital to underscore that the montane for-
est and the savannah vegetation somewhat dropped 
significantly during the study period at the expense 
of cultivated lands and built-up. Contrarily, bare soil 
dropped from 1988 to 2022 (5684 ha (10.47); 943 ha 
(1.73%), respectively) and considerably increased in 
2022 (3215(ha) 5.89%). The sudden increase of bare 
area in the year 2022 could be attributed to cattle rear-
ers’ activities through grazing especially in Lefo, in 
the southern part of the study area and Neshele in the 
northern part of the study area. Both grazers and the 
farmers’ activities through bush fires and expansion 
of agricultural lands play a vital role in the bare areas 
observed (Temgoua et  al., 2018). The ongoing civil 
unrest in Cameroon otherwise known as the Anglo-
phone crisis has played a significant role in the bare 
areas observed. The current conflictual civil war has 
led to massive destruction of properties and villages 
in the North West region of Cameroon (Amnesty 
International, 2021). As of 2018, reports on human 
right abuses indicates that around 87 villages have 
been burnt down in the North West region of Came-
roon (Lee et al., 2021; U.S. House of Representatives, 
2018). Current findings reveal that properties includ-
ing houses are continually being ruined in over 170 
villages (Agwanda et al., 2020; Bang et al., 2022).

Patterns of change of LULC of the Bamenda 
mountains for the past 34 years (1988–2022)

Overall, the LULCC results (Table 6, Fig.  8) indicate 
that built-up and cultivated lands increased throughout 
the study period (1988–2022). This implies that 5.11% 
and 17.31% of the total study area were occupied by 
built-up and cultivated land, respectively. The above 
patterns of LULC changes are attributed to the increase Ta
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in the population trend of the Mezam division that 
necessitates the desire to expand agricultural lands and 
thus the occupation of marginal lands, at the detriment 
of the natural environment. Although bare area dropped 
in 2003 and significantly increased in 2022, the reasons 
for the sudden increase are livestock rearers’ and farm-
ers’ activities. However, the civil unrest going on in 
Cameroon and particularly in the North West and South 
West regions as discussed in the analysis of LULC 
change of the Bamenda Mountains section above con-
tributes in a greater extend to the bare areas observed.

The areas occupied by other land cover categories 
showed losses differently (Table 6, Fig. 8) throughout 
the study period, with the greatest losses experienced 
by the montane forest, followed by the savannah veg-
etation (−13.96%, −3.89%, respectively).

LULC transition between 1988 and 2022

To better understand the evolution of LULC cat-
egories of the Bamenda Mountain, six classes were 

mapped (Fig.  7), following the LULC transition 
between the study years (Fig. 9). The transition map 
was generated by the LCM and showed areas of 
changes of the classes from 1988 to 2022. It is obvi-
ous that the selected classes showed transitions differ-
ently from 1988 to 2022. The transition from savanna 
to cultivated area (9546.93 ha) is higher throughout 
the study period due to the population growth of the 
Mezam division. This was followed by the transition 
from forest to savannah (6550.65 ha). The most sta-
ble LULC category during the study period is culti-
vated area to bare area (302.31 ha), implying there is 
a low probability of cultivated area transitioning to 
bare area. The next stable category is cultivated area 
to built-up (489.06 ha), showing that the probability 
of cultivated area transitioning to built-up is also low. 
The transition from forest to bare area and from forest 
to cultivated land showed significant changes (513.36 
ha, 1500.3 ha, respectively) and anthropogenic activi-
ties through deforestation, agricultural expansion, 
built-up, and cattle grazing are some of the main 

Fig. 8   Patterns of change 
of LULC of the Bamenda 
Mountains with gains and 
losses form 1988 to 2022

-50.00% 0.00% 50.00% 100.00% 150.00% 200.00%

Bare area

Built up area

Cul
vated area

Montane forest

Savannah

Lake

1988 2003 2022 Overall change  (1988-2022)

Table 6   Percentage of change of LULC of the Bamenda Mountains

LULC classes 1988 2003 2022 Overall change
(1988–2022)

Bare area 10.47% 1.73% 5.89% 4.58%
Built-up area 0.83% 1.83% 5.94% 5.11%
Cultivated area 10.47% 19.57% 27.78% 17.31%
Montane forest 22.37% 8.26% 8.41% −13.96%
Savannah 55.81% 68.56% 51.92% −3.89%
Lake 0.05% 0.05% 0.05% 0%
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factors responsible for the forest vegetation loss of the 
study area (Alemu et al., 2012; Temgoua et al., 2018). 
All the remaining LULC categories show great transi-
tions differently (Fig. 10).

The transition probability matrix of 2056 LULC change

The probability of LULC of 2056 showed the dyna-
mism of LULC classes (Table  7). Nevertheless, the 
likelihood of most classes remaining the same was 
high for lake (0.9243), savanna (0.5470), and built-
up area (0.5188); cultivated area showed moderate 
likelihood of remaining the same (0.4402). However, 
the probability of other LULC categories to remain 
unstable was low. It is obvious from Table 7 that no 
LULC categories will change to lake.

Results revealed a higher probability of montane 
forest changing to savanna (0.5397), with moderate 

probability of cultivated area to savanna (0.4253) 
than savanna to cultivated area (0.3152). Values also 
showed a moderate probability of bare area changing 
to savanna (0.4463). The main reason for the conver-
sion of montane forest could be increased population 
in the Mezam division, through immigration from 
neighboring subdivisions for greener pastures, espe-
cially as Bamenda is the head quarter of the North 
West region of Cameroon.

The projection results and validation of LULC of the 
Bamenda Mountain

The model accurately simulated the 2056 LULC 
(Fig.  11) by making a comparison of both the 
observed and simulated 2022 LULC maps. There 
was good similarity between their classes and the 
spatial distribution of classes (Table 8).

Fig. 9   Transition area in 
six LULC classes of the 
Bamenda Mountains from 
1988 to 2022
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Table 7   The transition probability matrix of 2056 LULC change

L = lake, SV = savanna, BltA = built-up area, MF = montane forest, CA = cultivated area, BA = bare area

Given : Probability to change to :

L SV BltA MF CA BA

L 0.9243 0.0032 0.0032 0.0000 0.0000 0.0694
SV 0.0000 0.5470 0.0665 0.0371 0.3152 0.0341
BltA 0.0000 0.3019 0.5188 0.0032 0.1502 0.0258
MF 0.0000 0.5397 0.0231 0.2713 0.1236 0.0423
CA 0.0000 0.4253 0.0817 0.0023 0.4402 0.0505
BA 0.0002 0.4463 0.0394 0.0274 0.2489 0.2378
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Prediction validation of LULC

The prediction validation results were achieved using 
kappa index of agreement (KIA) technique, employ-
ing the VALIDATE module in IDRISI SELVA to 
examine the level of resemblance between the actual 
and simulated 2022 LULC. The above technique pro-
vided the validation statistics for the reference 2022 
LULC and the comparison 2022 LULC (Table  2). 
The validation module observes the agreement 
between the LULC maps of the same classes (Gupta 
et al., 2020). The cross-tabulation approach was used 
to ascertain the magnitude of transformations of each 
LULC, for model validation after which the 2056 
future LULC map was projected.

The model validation statistics (Table  2) show 
classification agreement/disagreement according to 
ability to specify accurately quantity and allocation. 
The statistics clearly pointed out the resemblance 
between the actual 2022 LULC and the comparison 
2022 LULC. However, the dissimilarity between 
the two is due to the changes still to take place. The 
accuracy assessment statistics using the kappa coef-
ficient variations confirms the authenticity of the 
classified images (Table  3). The overall accuracies 
were 95.83%, 94.25%, and 94.48% for 1988, 2003, 
and 2022 images, respectively. Likewise, the model 
showed the overall accuracy of the simulated map 
to be Kno, 97.14 %; Klocation, 95.06%; Klocation-
Strata, 95.06%; and Kstandard, 92.47%.

Expected transition in 2056 by surface area in 
hectares and percentage

The predicted LULC of the Bamenda Mountains 
using the Markov chain model is presented in Table 8 

and Fig.  11. The 2056 LULC categories and surface 
areas were compared to those of 2022 to quantify the 
changes. The predicted figures of 2056 showed a con-
tinuous reduction of montane forest by 2401.92 ha 
(4.40%) and savanna by 25,862.67 ha (47.39%). Bare 
area is expected to drop in 2056 by 2905.92 ha (5.32%) 
(Table 2). The above decrease, when compared to 2022 
figures (Table  6), represents a loss of 3.97%, 4.53%, 
and 0.57% for montane forest, savanna, and bare area, 
respectively. The losses observed are gained by built-
up and cultivated land (5.72% and 3.39%, respectively), 
covering surface areas of 6364.89 ha (11.66%) and 
17,008.56 ha (31.17%), respectively.

The 2056 spatial distribution of LULC (Fig.  11) 
shows that the montane forest scatters across the study 
area with more patches towards the northern part, the 
central part, and the western part of the study area. The 
patches of forest remaining are observed mostly at the 
proximity of cultivated land, built-up, and savanna. 
The land cover categories covered by vegetation will 
be converted to built-up and cultivated land by 2056. 
The above transition is due to population increase and 
urbanization in the North West region of Cameroon, 
which is similar to that of many less developed coun-
tries of the world (Alemu et al., 2012; Said et al., 2021).

Discussion

Land use/land cover change

Land use/land cover change (LULCC) poses severe 
threats to the climate system which further disrupts 
the ecological balance while inducing nefarious 
effects on human well-being (Gomes et  al., 2021). 
While these changes can be assessed using a wide 
range of techniques, remote sensing and GIS offer a 
deep-rooted technology that helps to monitor, ana-
lyze, map, and forecast future land use scenario, to 
understand patterns of change in temporal and spatial 
aspects. The analysis of the LULCC of the Bamenda 
Mountains chain for the studied years (1988–2022) 
was computed, and LULC maps were generated. The 
overall accuracies obtained for Landsat TM (95.83%), 
ETM+ (94.25%), and OLI-TIRS (94.48%) for the 
years 1988, 2003, and 2022, respectively (Table  4) 
were authentic. Also, the kappa statistics for Landsat 

Table 8   Predicted LULC for 2056

LULC classes Area (ha) Area (%)

Lake 28 0.05
Savanna 25862.67 47.39
Built-up area 6364.89 11.66
Montane forest 2401.92 4.40
Cultivated area 17008.56 31.17
Bare area 2905.92 5.32
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Fig. 10   LULC transition map of the Bamenda Mountains from 1988 to 2022
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TM (0.94), ETM+ (0.91), and OLI-TIRS (0.92) 
for the years 1988, 2003, and 2022, respectively 
(Table  3), beefed up the accuracy and reliability of 

the study. The kappa coefficient and overall accura-
cies were above 90%, indicating a high level of sat-
isfaction of the classification performance (Tadese 

Fig. 11   Predicted LULC map of 2056

1053   Page 20 of 27



Environ Monit Assess (2023) 195:1053

1 3
Vol.: (0123456789)

et  al., 2021; Lahon et  al., 2023). These outcomes 
coincide with the current findings of Weslati et  al. 
(2023) in the case of Mellengue catchment area of 
North Africa, and Akdeniz et al. (2023) in the case of 
Belek tourism center of Turkey.

Six LULC classes (Table  4) were mapped, and 
the resulting outcomes revealed they transitioned dif-
ferently throughout the study period (1988–2022). 
For instance, the alteration from the natural vegeta-
tion to other land cover categories such as cultivated 
area (1500.3 ha), built-up (2014.29 ha), and bare 
area (513.36 ha) points to the diversity of underly-
ing causes and the severity of land use intensity 
in Mezam. A wholesale of studies attribute LULC 
configuration to population growth (Ishtiaque 2017; 
Rimal et al., 2018; Wang et al., 2021) and meagerly 
to other factors. It is important to highlight that 
population growth has a multiplier effects on both 
human well-beings and the natural environment. Over 
the years, the Bamenda Mountains chain has been 
severely infringed by the rapidly growing popula-
tion of Mezam division due to the constant quest for 
food, water, energy resource, construction material 
and other valuable resources. Additionally, just like 
in the entire country, over 70% of the active popu-
lation in Mezam is involved in crop production and 
livestock-rearing activities (Awazi, 2022). Contextu-
ally, this area constitutes an integral part of Western 
Highlands of Cameroon habitually referred to as the 
breadbasket of the Central African sub-region, due to 
the great quantity of food and cash crop production in 
the region (Kimengsi et al., 2022). However, popula-
tion expansion raises alarms regarding the effects of 
urbanization and the invasion of marginal lands due to 
urban sprawl, resulting to the configuration of the nat-
ural landscape that may potentially compromise food 
security in Mezam and across the national territory. 
Nevertheless, these configurations do not come as a 
surprise as such trends are not new in many develop-
ing countries of the world (Bruggeman et  al.,  2016; 
Wang et al., 2021). As long as the transformation of 
the natural land to agricultural fields (dominant activ-
ity of the area) comes with livelihood benefits, future 
land use changes are inevitable. Therefore, invest-
ments in agriculture within Mezam division and 
across the national territory should take into account 
sustainable environmental practices like agroforestry 
by incorporating fast growing trees like Sesbania 
sesban and Calliandra calothyrsus amid crops. This 

suggestion aligns with Awazi and Tchamba (2019) 
who highlighted agroforestry as a climate change 
mitigation strategy for smallholder farmers in the 
North West region of Cameroon. To complement this 
action, the urban population should be educated on 
the need to embrace renewable energy usage. These 
actions serve as a blueprint to fulfilling the social 
responsibility of reducing carbon dioxide emissions 
which goes in line with sustainable development 
goals “Goal 7: Ensure access to affordable, reliable, 
sustainable and modern energy for all” and “Goal 13: 
Take urgent action to combat climate change and its 
impacts” (Matte et  al., 2015; Sachs et  al., 2022; Jan 
et al., 2023).

Patterns of change of land use and land cover

The shrinkage of the vegetation cover from 1988 to 
2022 to the benefits of built-up and agricultural lands 
comes with detrimental impacts on the natural envi-
ronment. For instance, the increase in cultivated land 
and the built-up area (Fig.  7, Table  5) throughout 
the study period is linked to the population growth 
trends of Bamenda. Studies highlight that population 
growth goes in line with the occupation of marginal 
lands due to urbanization (Hyandye & Martz,  2017, 
Amgoth et al., 2023). Increased population also sky-
rockets food demand, thus the expansion of agricul-
tural lands (Said et al., 2021). Human encroachment 
into the forest and the replacement of the forest vege-
tation by settlements and crop lands are also reported 
in mountainous areas of the North West region of 
Cameroon (Maghah et al., 2021; Fogwe et al., 2019). 
The above results necessitate the visitation of regula-
tions and laws governing forests and protected areas 
in Cameroon. Recent studies on LULC change mostly 
at the frontiers of protected areas put forward the need 
for more research and policymakers to revise policies 
and ensure their execution in protected areas (Tesfaw 
et al., 2018; Said et al., 2021).

Future land use and land cover change

In Cameroon, varied empirical studies have assessed 
LULC changes across different regions (Ewane and 
Lee, 2020; Ewane et al., 2023; Siwe & Koch, 2008; 
Mertens & Lambin, 2000), but only few of such 
works foretold future LULC scenarios (Moskolai 
et al., 2022; Saputra and Lee, 2019). In like manner, 
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several studies have uncovered the spatio-tempo-
ral dynamics of LULC in the North West region of 
Cameroon with emphasis on watershed management 
(Temgoua et  al., 2018), ecological changes (Mofor 
et  al., 2022), and spatio-temporal NDVI (Maghah 
et al., 2021), while others relate spatio-temporal alter-
nations to protected zones and agro-pastoral conflicts 
(Ntangti et al., 2019). However, none of these studies 
considered predicting the future land use scenarios of 
this region, thus validating the relevance of the cur-
rent study. By assessing the status and spatio-tempo-
ral dynamics of the Bamenda Mountains while fore-
casting future land use scenarios, this study will bring 
clarity and closure to prolonged debates surrounding 
land use change in the North West region of Came-
roon and other tropical mountainous ecosystems.

Markov chain model utilized in this research is a 
stochastic framework, modeling temporal or sequen-
tial data that has been widely used to display areas of 
land use changes at great spatial scales (Huang et al., 
2008). This model, with the help of the transition 
probability matrix, shows how possible one LULC 
category can change into another LULC category 
(Vazquez-Quintero et al., 2016; Halmy et al., 2015). 
CA-Markov chain model is more appropriate for land 
use and land cover change prediction (Camara, 2020; 
Subedi et al., 2013; Kumar et al., 2014). This model 
is suitable especially when the changes and the direc-
tion of the changes are complex to define. This model 
is an appropriate fit for the Bamenda Mountains chain 
forest, as this zone is a multi-faceted pluto-volcanic 
structure with no clear cut demarcation between 
its mountains (Zangmo et  al., 2017; Wantim et  al., 
2013). The model validation of the current study 
using the kappa index of agreement (KIA) compared 
the simulated and the actual 2022 LULC map. The 
KIA statistics (Table 2) showed a high level of resem-
blance between the simulated and the actual 2022 
LULC map. The overall accuracies (95.83%, 94.25%, 
and 94.48% for 1988, 2003, and 2022 images, respec-
tively) and the overall kappa index of agreement 
(Kno, 97.14%; Klocation, 95.06 %; KlocationStrata, 
95.06%; and Kstandard, 92.47%) indicated a high 
level of agreement standards between the simulated 
and actual 2022 LULC map (Gashaw et  al., 2017; 
Singh et  al., 2015; Mosammam et  al., 2017). The 
CA-Markov chain model thus proved to be a reli-
able and an effective tool to predict and analyze the 
2056 LULC changes. The 2056 figures showed a 

great reduction of the vegetation cover (montane for-
est and savanna) at the expense of built-up area and 
cultivated land (Table 8, Fig. 11). These results are in 
line with the findings of Gashaw et al. (2017) in the 
Blue Nile Basin of Ethiopia; Yirsaw et al. (2017) in 
the coastal area of Su-Xi Chang in China; and Liping 
et al. (2018) in a hilly landscape of Jiangle in China. 
The expansion of agricultural lands and settlement at 
the detriment of the natural environment (Table  8,) 
everything being equal, could be attributed to future 
anthropogenic activities due to future population 
growth. The 2056 predicted LULC could be used as 
a guide for decision-makers, land use management 
planners, and conservationists of the study area for 
sustainable land management.

Conclusion and recommendations

Analyses of land use and land cover change (LULCC) 
are essential to inform decision-makers on plan-
ning policy of land use. There have been significant 
LULCC of the Bamenda Mountains, in the North 
West region of Cameroon. Following the field obser-
vations, the Ground Control Points collected, the key 
informant interview, and focus group discussions, 
the changes observed on this site are largely attrib-
uted to population pressure and livestock rearing. The 
main finding of the present research work revealed 
a substantial change of the Bamenda Mountains for 
the past 34 years (1988–2022). Cultivated land and 
built-up all increased throughout the study period at 
the expense of the vegetation cover that shrank drasti-
cally. The predicted figures of 2056 showed a continu-
ous reduction of montane forest and savanna 2401.92 
ha (4.40%) and 25,862.67 ha (47.39%), respectively. 
Bare area is expected to drop in 1956 (2905.92 ha 
(5.32%)). The above decrease, when compared to 
2022 figures, represents a loss of 3.97%, 4.53%, and 
0.57%, respectively. The losses observed are gained 
by built-up and cultivated land (5.72% and 3.39%, 
respectively), covering surface areas of 6364.89 ha 
(11.66%) and 17,008.56 ha (31.17%), respectively.

The vegetation cover of the study area is expected 
to continue reducing. In 2056, montane forest, 
savanna, and bare area are expected to drop by 3.97%, 
4.53%, and 0.57%, respectively, when compared to 
the 2022 figures, whereas the shrinkage observed 
will be gained by built-up and cultivated land (5.72% 
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and 3.39%, respectively). The direction of LULCC 
viewed by the respondents was concordant with the 
satellite image interpretation results. The main driv-
ing forces of the Bamenda Mountains change are 
anthropogenic activities. This implies that, ecosystem 
alteration, loss of biodiversity, and the deterioration 
of forest products are likely to continue with disas-
trous consequences on the environment and the liveli-
hood of the local community. Nevertheless, the bird 
life study in the Kilum Ijim Forest reserve of Oku in 
the North West region of Cameroon suggests suites 
of bird species to be indicators of vegetation changes. 
Remote sensing and GIS technology are thus a reli-
able, competitive, and cost-effective technology hav-
ing the potentials to map out, obtain information, and 
analyze land use changes from large portions of the 
earth over long periods.

To ensure the sustainable management of the envi-
ronment of this site, improved land conservation tech-
niques, afforestation and reforestation, and off-farm 
activities are crucial. Also, organizing campaigns of 
education and information to sensitize the general 
public of the Mezam division is possible. Ensuring 
clear land tenure policies in the North West region 
in particular and in Cameroon at large is essential for 
land management planning.

The civil conflict in the North West and South 
West regions of Cameroon has been considered a 
human right crisis by the international community, 
given it emanated from the marginalization of the 
Anglophones through gradual infiltration of the 
French educational and legal systems into the Eng-
lish systems. The root cause of the crisis may be 
traced back to violating the 1961 constitution that 
bind both parties with equal status. Meanwhile, 
the civil unrest in the North West and South West 
regions constitutes one of the causes of landscape 
configuration in both regions.

This conflictual civil war needs an immediate 
intervention. This could be possible through a genu-
ine and inclusive dialogue between leaders of the 
opposing parties (the state and Anglophone lead-
ers) in a neutral land (outside Cameroon) and in the 
presence of international mediators (UNO, Cam-
eroons’ colonial powers and other countries with 
strong bilateral ties with Cameroon). Human rights 
should be respected; thus, Anglophone detainees 

and those already imprisoned should be released 
and given a chance to participate in the dialogue. A 
disarmament committee with representatives from 
both parties should facilitate the ceased fire process.

Satisfying these three measures can build confi-
dence and trust amongst the parties concerned and the 
general population. Then, upon settling for a gentleman 
agreement, a reconstruction committee can rebuild 
the affected regions. This may not happen overnight. 
However, it could be the gateway out of the crisis and a 
starting point to landscape reconstruction in the region.

Future scholars could consider the effect of civil 
conflicts on landscape dynamics in the North West 
and South West regions of Cameroon. Also, ana-
lyzing the relationship between landscape configu-
ration and land tenure is crucial, as the tenure in 
place favors the haphazard occupation of land in the 
North West region of Cameroon.
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